47 resultados para Clinical trials data


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a simple Bayesian approach to sample size determination in clinical trials. It is required that the trial should be large enough to ensure that the data collected will provide convincing evidence either that an experimental treatment is better than a control or that it fails to improve upon control by some clinically relevant difference. The method resembles standard frequentist formulations of the problem, and indeed in certain circumstances involving 'non-informative' prior information it leads to identical answers. In particular, unlike many Bayesian approaches to sample size determination, use is made of an alternative hypothesis that an experimental treatment is better than a control treatment by some specified magnitude. The approach is introduced in the context of testing whether a single stream of binary observations are consistent with a given success rate p(0). Next the case of comparing two independent streams of normally distributed responses is considered, first under the assumption that their common variance is known and then for unknown variance. Finally, the more general situation in which a large sample is to be collected and analysed according to the asymptotic properties of the score statistic is explored. Copyright (C) 2007 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents practical approaches to the problem of sample size re-estimation in the case of clinical trials with survival data when proportional hazards can be assumed. When data are readily available at the time of the review, on a full range of survival experiences across the recruited patients, it is shown that, as expected, performing a blinded re-estimation procedure is straightforward and can help to maintain the trial's pre-specified error rates. Two alternative methods for dealing with the situation where limited survival experiences are available at the time of the sample size review are then presented and compared. In this instance, extrapolation is required in order to undertake the sample size re-estimation. Worked examples, together with results from a simulation study are described. It is concluded that, as in the standard case, use of either extrapolation approach successfully protects the trial error rates. Copyright © 2012 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most statistical methodology for phase III clinical trials focuses on the comparison of a single experimental treatment with a control. An increasing desire to reduce the time before regulatory approval of a new drug is sought has led to development of two-stage or sequential designs for trials that combine the definitive analysis associated with phase III with the treatment selection element of a phase II study. In this paper we consider a trial in which the most promising of a number of experimental treatments is selected at the first interim analysis. This considerably reduces the computational load associated with the construction of stopping boundaries compared to the approach proposed by Follman, Proschan and Geller (Biometrics 1994; 50: 325-336). The computational requirement does not exceed that for the sequential comparison of a single experimental treatment with a control. Existing methods are extended in two ways. First, the use of the efficient score as a test statistic makes the analysis of binary, normal or failure-time data, as well as adjustment for covariates or stratification straightforward. Second, the question of trial power is also considered, enabling the determination of sample size required to give specified power. Copyright © 2003 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of phase II single-arm clinical trials of a new drug is to determine whether it has sufficient promising activity to warrant its further development. For the last several years Bayesian statistical methods have been proposed and used. Bayesian approaches are ideal for earlier phase trials as they take into account information that accrues during a trial. Predictive probabilities are then updated and so become more accurate as the trial progresses. Suitable priors can act as pseudo samples, which make small sample clinical trials more informative. Thus patients have better chances to receive better treatments. The goal of this paper is to provide a tutorial for statisticians who use Bayesian methods for the first time or investigators who have some statistical background. In addition, real data from three clinical trials are presented as examples to illustrate how to conduct a Bayesian approach for phase II single-arm clinical trials with binary outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We focus on the comparison of three statistical models used to estimate the treatment effect in metaanalysis when individually pooled data are available. The models are two conventional models, namely a multi-level and a model based upon an approximate likelihood, and a newly developed model, the profile likelihood model which might be viewed as an extension of the Mantel-Haenszel approach. To exemplify these methods, we use results from a meta-analysis of 22 trials to prevent respiratory tract infections. We show that by using the multi-level approach, in the case of baseline heterogeneity, the number of clusters or components is considerably over-estimated. The approximate and profile likelihood method showed nearly the same pattern for the treatment effect distribution. To provide more evidence two simulation studies are accomplished. The profile likelihood can be considered as a clear alternative to the approximate likelihood model. In the case of strong baseline heterogeneity, the profile likelihood method shows superior behaviour when compared with the multi-level model. Copyright (C) 2006 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we set out what we consider to be a set of best practices for statisticians in the reporting of pharmaceutical industry-sponsored clinical trials. We make eight recommendations covering: author responsibilities and recognition; publication timing; conflicts of interest; freedom to act; full author access to data; trial registration and independent review. These recommendations are made in the context of the prominent role played by statisticians in the design, conduct, analysis and reporting of pharmaceutical sponsored trials and the perception of the reporting of these trials in the wider community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seamless phase II/III clinical trials combine traditional phases II and III into a single trial that is conducted in two stages, with stage 1 used to answer phase II objectives such as treatment selection and stage 2 used for the confirmatory analysis, which is a phase III objective. Although seamless phase II/III clinical trials are efficient because the confirmatory analysis includes phase II data from stage 1, inference can pose statistical challenges. In this paper, we consider point estimation following seamless phase II/III clinical trials in which stage 1 is used to select the most effective experimental treatment and to decide if, compared with a control, the trial should stop at stage 1 for futility. If the trial is not stopped, then the phase III confirmatory part of the trial involves evaluation of the selected most effective experimental treatment and the control. We have developed two new estimators for the treatment difference between these two treatments with the aim of reducing bias conditional on the treatment selection made and on the fact that the trial continues to stage 2. We have demonstrated the properties of these estimators using simulations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, in order to accelerate drug development, trials that use adaptive seamless designs such as phase II/III clinical trials have been proposed. Phase II/III clinical trials combine traditional phases II and III into a single trial that is conducted in two stages. Using stage 1 data, an interim analysis is performed to answer phase II objectives and after collection of stage 2 data, a final confirmatory analysis is performed to answer phase III objectives. In this paper we consider phase II/III clinical trials in which, at stage 1, several experimental treatments are compared to a control and the apparently most effective experimental treatment is selected to continue to stage 2. Although these trials are attractive because the confirmatory analysis includes phase II data from stage 1, the inference methods used for trials that compare a single experimental treatment to a control and do not have an interim analysis are no longer appropriate. Several methods for analysing phase II/III clinical trials have been developed. These methods are recent and so there is little literature on extensive comparisons of their characteristics. In this paper we review and compare the various methods available for constructing confidence intervals after phase II/III clinical trials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an adaptive seamless phase II/III clinical trial interim analysis, data are used for treatment selection, enabling resources to be focused on comparison of more effective treatment(s) with a control. In this paper, we compare two methods recently proposed to enable use of short-term endpoint data for decision-making at the interim analysis. The comparison focuses on the power and the probability of correctly identifying the most promising treatment. We show that the choice of method depends on how well short-term data predict the best treatment, which may be measured by the correlation between treatment effects on short- and long-term endpoints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an urgent need to treat individuals with high blood pressure (BP) with effective dietary strategies. Previous studies suggest a small, but significant decrease in BP after lactotripeptides (LTP) ingestion, although the data are inconsistent. The study aim was to perform a comprehensive meta-analysis of data from all relevant randomised controlled trials (RCT). Medline, Cochrane library, EMBASE and Web of Science were searched until May 2014. Eligibility criteria were RCT that examined the effects of LTP on BP in adults, with systolic BP (SBP) and diastolic BP (DBP) as outcome measures. Thirty RCT met the inclusion criteria, which resulted in 33 sets of data. The pooled treatment effect for SBP was −2.95 mmHg (95% CI: −4.17, −1.73; p < 0.001), and for DBP was −1.51 mmHg (95% CI: −2.21, −0.80; p < 0.001). Sub-group analyses revealed that reduction of BP in Japanese studies was significantly greater, compared with European studies (p = 0.002 for SBP and p < 0.001 for DBP). The 24-h ambulatory BP (AMBP) response to LTP supplementation was statistically non-significant (p = 0.101 for SBP and p = 0.166 for DBP). Both publication bias and “small-study effect” were identified, which shifted the treatment effect towards less significant SBP and non-significant DBP reduction after LTP consumption. LTP may be effective in BP reduction, especially in Japanese individuals; however sub-group, meta-regression analyses and statistically significant publication biases suggest inconsistencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a simple futility design that allows a comparative clinical trial to be stopped due to lack of effect at any of a series of planned interim analyses. Stopping due to apparent benefit is not permitted. The design is for use when any positive claim should be based on the maximum sample size, for example to allow subgroup analyses or the evaluation of safety or secondary efficacy responses. A final frequentist analysis can be performed that is valid for the type of design employed. Here the design is described and its properties are presented. Its advantages and disadvantages relative to the use of stochastic curtailment are discussed. Copyright (C) 2003 John Wiley Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador: