5 resultados para RNA-analytics

em University of Southampton, United Kingdom


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this lecture for a second year interdisciplinary course (part of the curriculum innovation programme) We explore the scope of social media analytics and look at two aspects in depth: Analysing for influence (looking at factors such as network structure, propagation of content and interaction), and analysing for trust (looking at different methods including policy, provenance and reputation - both local and global). The lecture notes include a number of short videos, which cannot be included here for copy-write reasons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wednesday 26th March 2014 Speaker(s): Dr Trung Dong Huynh Organiser: Dr Tim Chown Time: 26/03/2014 11:00-11:50 Location: B32/3077 File size: 349Mb Abstract Understanding the dynamics of a crowdsourcing application and controlling the quality of the data it generates is challenging, partly due to the lack of tools to do so. Provenance is a domain-independent means to represent what happened in an application, which can help verify data and infer their quality. It can also reveal the processes that led to a data item and the interactions of contributors with it. Provenance patterns can manifest real-world phenomena such as a significant interest in a piece of content, providing an indication of its quality, or even issues such as undesirable interactions within a group of contributors. In this talk, I will present an application-independent methodology for analysing provenance graphs, constructed from provenance records, to learn about such patterns and to use them for assessing some key properties of crowdsourced data, such as their quality, in an automated manner. I will also talk about CollabMap (www.collabmap.org), an online crowdsourcing mapping application, and show how we applied the approach above to the trust classification of data generated by the crowd, achieving an accuracy over 95%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resources from the Singapore Summer School 2014 hosted by NUS. ws-summerschool.comp.nus.edu.sg

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real-time geoparsing of social media streams (e.g. Twitter, YouTube, Instagram, Flickr, FourSquare) is providing a new 'virtual sensor' capability to end users such as emergency response agencies (e.g. Tsunami early warning centres, Civil protection authorities) and news agencies (e.g. Deutsche Welle, BBC News). Challenges in this area include scaling up natural language processing (NLP) and information retrieval (IR) approaches to handle real-time traffic volumes, reducing false positives, creating real-time infographic displays useful for effective decision support and providing support for trust and credibility analysis using geosemantics. I will present in this seminar on-going work by the IT Innovation Centre over the last 4 years (TRIDEC and REVEAL FP7 projects) in building such systems, and highlights our research towards improving trustworthy and credible of crisis map displays and real-time analytics for trending topics and influential social networks during major news worthy events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An emerging consensus in cognitive science views the biological brain as a hierarchically-organized predictive processing system. This is a system in which higher-order regions are continuously attempting to predict the activity of lower-order regions at a variety of (increasingly abstract) spatial and temporal scales. The brain is thus revealed as a hierarchical prediction machine that is constantly engaged in the effort to predict the flow of information originating from the sensory surfaces. Such a view seems to afford a great deal of explanatory leverage when it comes to a broad swathe of seemingly disparate psychological phenomena (e.g., learning, memory, perception, action, emotion, planning, reason, imagination, and conscious experience). In the most positive case, the predictive processing story seems to provide our first glimpse at what a unified (computationally-tractable and neurobiological plausible) account of human psychology might look like. This obviously marks out one reason why such models should be the focus of current empirical and theoretical attention. Another reason, however, is rooted in the potential of such models to advance the current state-of-the-art in machine intelligence and machine learning. Interestingly, the vision of the brain as a hierarchical prediction machine is one that establishes contact with work that goes under the heading of 'deep learning'. Deep learning systems thus often attempt to make use of predictive processing schemes and (increasingly abstract) generative models as a means of supporting the analysis of large data sets. But are such computational systems sufficient (by themselves) to provide a route to general human-level analytic capabilities? I will argue that they are not and that closer attention to a broader range of forces and factors (many of which are not confined to the neural realm) may be required to understand what it is that gives human cognition its distinctive (and largely unique) flavour. The vision that emerges is one of 'homomimetic deep learning systems', systems that situate a hierarchically-organized predictive processing core within a larger nexus of developmental, behavioural, symbolic, technological and social influences. Relative to that vision, I suggest that we should see the Web as a form of 'cognitive ecology', one that is as much involved with the transformation of machine intelligence as it is with the progressive reshaping of our own cognitive capabilities.