8 resultados para RNA-analytics
em CaltechTHESIS
Resumo:
The signal recognition particle (SRP) and its receptor (SR) are universally conserved protein machineries that deliver nascent peptides to their proper destination. The SRP RNA is a universally conserved and essential component of SRP, which serves as the “catalyst” of the protein targeting cycle. The SRP RNA accelerates SRP-SR complex formation at the beginning of the protein targeting reaction, and triggers GTP hydrolysis and SRP-SR complex disassembly at the end. Here we combined biochemical and biophysical approaches to investigate the molecular mechanism of the functions of the SRP RNA. We found that two functional ends in the SRP RNA mediate distinct functions. The tetraloop end facilitates initial assembly of SRP and SR by mediating an electrostatic interaction with the Lys399 receptor, which ensures efficient and accurate substrate targeting. At the later stage of the SRP cycle, the SRP-SR complex relocalizes ~ 100 Angstrom to the 5’,3’-distal end of the RNA, a conformation crucial for GTPase activation and cargo handover. These results, combined with recent structural work, elucidate the functions of the SRP RNA during the protein targeting reaction.
Resumo:
A novel method for gene enrichment has been developed and applied to mapping the rRNA genes of two eucaryotic organisms. The method makes use of antibodies to DNA/RNA hybrids prepared by injecting rabbits with the synthetic hybrid poly(rA)•poly(dT). Antibodies which cross-react with non-hybrid nucleic acids were removed from the purified IgG fraction by adsorption on columns of DNA-Sepharose, oligo(dT)-cellulose, and poly(rA)-Sepharose. Subsequent purification of the specific DNA/RNA hybrid antibody was carried out on a column of oligo(dT)-cellulose to which poly(rA) was hybridized. Attachment of these antibodies to CNBr-activated Sepharose produced an affinity resin which specifically binds DNA/RNA hybrids.
In order to map the rDNA of the slime mold Dictyostelium discoideum, R-loops were formed using unsheared nuclear DNA and the 178 and 268 rRNAs of this organism. This mixture was passed through a column containing the affinity resin, and bound molecules containing R- loops were eluted by high salt. This purified rDN A was observed directly in the electron microscope. Evidence was obtained that there is a physical end to Dictyostelium rDN A molecules approximately 10 kilobase pairs (kbp) from the region which codes for the 268 rRNA. This finding is consistent with reports of other investigators that the rRNA genes exist as inverse repeats on extra-chromosomal molecules of DNA unattached to the remainder of the nuclear DNA in this organism.
The same general procedure was used to map the rRNA genes of the rat. Molecules of DNA which contained R-loops formed with the 188 and 288 rRNAs were enriched approximately 150- fold from total genomal rat DNA by two cycles of purification on the affinity column. Electron microscopic measurements of these molecules enabled the construction of an R-loop map of rat rDNA. Eleven of the observed molecules contained three or four R-loops or else two R-loops separated by a long spacer. These observations indicated that the rat rRNA genes are arranged as tandem repeats. The mean length of the repeating units was 37.2 kbp with a standard deviation of 1.3 kbp. These eleven molecules may represent repeating units of exactly the same length within the errors of the measurements, although a certain degree of length heterogeneity cannot be ruled out. If significantly shorter or longer repeating units exist, they are probably much less common than the 37.2 kbp unit.
The last section of the thesis describes the production of antibodies to non-histone chromosomal proteins which have been exposed to the ionic detergent sodium dodecyl sulfate (SDS). The presence of low concentrations of SDS did not seem to affect either production of antibodies or their general specificity. Also, a technique is described for the in situ immunofluorescent detection of protein antigens in polyacrylamide gels.
Resumo:
Early embryogenesis in metazoa is controlled by maternally synthesized products. Among these products, the mature egg is loaded with transcripts representing approximately two thirds of the genome. A subset of this maternal RNA pool is degraded prior to the transition to zygotic control of development. This transfer of control of development from maternal to zygotic products is referred to as the midblastula transition (or MBT). It is believed that the degradation of maternal transcripts is required to terminate maternal control of development and to allow zygotic control of development to begin. Until now this process of maternal transcript degradation and the subsequent timing of the MBT has been poorly understood. I have demonstrated that in the early embryo there are two independent RNA degradation pathways, either of which is sufficient for transcript elimination. However, only the concerted action of both pathways leads to elimination of transcripts with the correct timing, at the MBT. The first pathway is maternally encoded, is triggered by egg activation, and is targeted to specific classes of mRNAs through cis-acting elements in the 3' untranslated region (UTR}. The second pathway is activated 2 hr after fertilization and functions together with the maternal pathway to ensure that transcripts are degraded by the MBT. In addition, some transcripts fail to degrade at select subcellular locations adding an element of spatial control to RNA degradation. The spatial control of RNA degradation is achieved by protecting, or masking, transcripts from the degradation machinery. The RNA degradation and protection events are regulated by distinct cis-elements in the 3' untranslated region (UTR). These results provide the first systematic dissection of this highly conserved process in development and demonstrate that RNA degradation is a novel mechanism used for both temporal and spatial control of development.
Resumo:
The ability to interface with and program cellular function remains a challenging research frontier in biotechnology. Although the emerging field of synthetic biology has recently generated a variety of gene-regulatory strategies based on synthetic RNA molecules, few strategies exist through which to control such regulatory effects in response to specific exogenous or endogenous molecular signals. Here, we present the development of an engineered RNA-based device platform to detect and act on endogenous protein signals, linking these signals to the regulation of genes and thus cellular function.
We describe efforts to develop an RNA-based device framework for regulating endogenous genes in human cells. Previously developed RNA control devices have demonstrated programmable ligand-responsive genetic regulation in diverse cell types, and we attempted to adapt this class of cis-acting control elements to function in trans. We divided the device into two strands that reconstitute activity upon hybridization. Device function was optimized using an in vivo model system, and we found that device sequence is not as flexible as previously reported. After verifying the in vitro activity of our optimized design, we attempted to establish gene regulation in a human cell line using additional elements to direct device stability, structure, and localization. The significant limitations of our platform prevented endogenous gene regulation.
We next describe the development of a protein-responsive RNA-based regulatory platform. Employing various design strategies, we demonstrated functional devices that both up- and downregulate gene expression in response to a heterologous protein in a human cell line. The activity of our platform exceeded that of a similar, small-molecule-responsive platform. We demonstrated the ability of our devices to respond to both cytoplasmic- and nuclear-localized protein, providing insight into the mechanism of action and distinguishing our platform from previously described devices with more restrictive ligand localization requirements. Finally, we demonstrated the versatility of our device platform by developing a regulatory device that responds to an endogenous signaling protein.
The foundational tool we present here possesses unique advantages over previously described RNA-based gene-regulatory platforms. This genetically encoded technology may find future applications in the development of more effective diagnostic tools and targeted molecular therapy strategies.
Resumo:
SECTION I
Section I is concerned with a partial sequence analysis conducted on 5S RNA from HeLa cells. Analysis of the oligonucleotide pattern after pancreatic ribonuclease digestion of a highly-purified preparation of 5S RNA gave results which were in general agreement with those published for KB cells, both with respect to the identity and the frequency of the partial sequences. However, the presence of a trinucleotide not found in the KB 5S pattern, together with the reproducibly much lower than expected molar yield of the larger oligonucleotides strongly suggested the occurrence of alternate sequences at various sites in the 5S molecules of human cells. The presence of ppGp and pppGp at the 5'-terminus of HeLa 5S RNA was clearly demonstrated. The implications of this finding with regard to the origin of 5S RNA are discussed.
SECTION II
In Section II the proportion of the HeLa cell genome complementary to tRNA was investigated by using RNA- DNA hybridization. The value for saturation of the HeLa DNA by tRNA was found to be 1.1 x 10-5, which corresponds to about 4900 sites for tRNA per HeLa cell in an exponentially growing culture. Analysis of the nucleotide composition of the hybridized tRNA revealed significant differences from the nucleotide composition of the input tRNA, with the purine to pyrimidine ratio indicating, however, that these differences were not produced by excessive RNase attack of the hybrid. The size of the hybridized tRNA was only moderately smaller than that of the input RNA; the average S value in formaldehyde was 2.7 (corresponding to a length of about 65 nucleotides), suggesting that a relatively small portion near the ends of the hybridized 4S chains had been removed by RNase.
SECTION III
The proportion of the HeLa cell genome complementary to 5S RNA was investigated by using RNA-DNA hybridization. The value for saturation of the HeLa DNA by 5S RNA was found to be 2.3 x 10-5, which corresponds to about 7,000 sites for 5S RNA per HeLa cell in an exponentially growing culture. Analysis of the nucleotide composition of the hybridized 5S RNA revealed no significant difference from the nucleotide composition of the input RNA. At the RNA to DNA input ratio of 1:1000, the average S value in formaldehyde of the hybridized 5S RNA corresponded to a polynucleotide chain about two-thirds the size of the input RNA.
Resumo:
Part I. Proton Magnetic Resonance of Polynucleotides and Transfer RNA.
Proton magnetic resonance was used to follow the temperature dependent intramolecular stacking of the bases in the polynucleotides of adenine and cytosine. Analysis of the results on the basis of a two state stacked-unstacked model yielded values of -4.5 kcal/mole and -9.5 kcal/mole for the enthalpies of stacking in polyadenylic and polycytidylic acid, respectively.
The interaction of purine with these molecules was also studied by pmr. Analysis of these results and the comparison of the thermal unstacking of polynucleotides and short chain nucleotides indicates that the bases contained in stacks within the long chain poly nucleotides are, on the average, closer together than the bases contained in stacks in the short chain nucleotides.
Temperature and purine studies were also carried out with an aqueous solution of formylmethionine transfer ribonucleic acid. Comparison of these results with the results of similar experiments with the homopolynucleotides of adenine, cytosine and uracil indicate that the purine is probably intercalating into loop regions of the molecule.
The solvent denaturation of phenylalanine transfer ribonucleic acid was followed by pmr. In a solvent mixture containing 83 volume per cent dimethylsulf oxide and 17 per cent deuterium oxide, the tRNA molecule is rendered quite flexible. It is possible to resolve resonances of protons on the common bases and on certain modified bases.
Part II. Electron Spin Relaxation Studies of Manganese (II) Complexes in Acetonitrile.
The electron paramagnetic resonance spectra of three Mn+2 complexes, [Mn(CH3CN)6]+2, [MnCl4]-2, and [MnBr4]-2, in acetonitrile were studied in detail. The objective of this study was to relate changes in the effective spin Hamiltonian parameters and the resonance line widths to the structure of these molecular complexes as well as to dynamical processes in solution.
Of the three systems studied, the results obtained from the [Mn(CH3CN)6]+2 system were the most straight-forward to interpret. Resonance broadening attributable to manganese spin-spin dipolar interactions was observed as the manganese concentration was increased.
In the [MnCl4]-2 system, solvent fluctuations and dynamical ion-pairing appear to be significant in determining electron spin relaxation.
In the [MnBr4]-2 system, solvent fluctuations, ion-pairing, and Br- ligand exchange provide the principal means of electron spin relaxation. It was also found that the spin relaxation in this system is dependent upon the field strength and is directly related to the manganese concentration. A relaxation theory based on a two state collisional model was developed to account for the observed behavior.
Resumo:
Part I. The cellular slime mold Dictyostelium discoideum is a simple eukaryote which undergoes a multi-cellular developmental process. Single cell myxamoebae divide vegetatively in the presence of a food source. When the food is depleted or removed, the cells aggregate, forming a migrating pseudoplasmodium which differentiates into a fruiting body containing stalk and spore cells. I have shown that during the developmental cycle glycogen phosphorylase, aminopeptidase, and alanine transaminase are developmentally regulated, that is their specific activities increased at a specific time in the developmental cycle. Phosphorylase activity is undetectable in developing cells until mid-aggregation whereupon it increases and reaches a maximum at mid-culmination. Thereafter the enzyme disappears. Actinomycin D and cycloheximide studies as well as studies with morphologically aberrant and temporally deranged mutants indicate that prior RNA and concomitant protein synthesis are necessary for the rise and decrease in activity and support the view that the appearance of the enzyme is regulated at the transcriptional level. Aminopeptidase and alanine transaminase increase 3 fold starting at starvation and reach maximum activity at 18 and 5 hours respectively.
The cellular DNA s of D. discoideum were characterized by CsC1 buoyant density gradient centrifugation and by renaturation kinetics. Whole cell DNA exhibits three bands in CsCl: ρ = 1.676 g/cc (nuclear main band), 1.687 (nuclear satellite), and 1.682 (mitochondrial). Reassociation kinetics at a criterion of Tm -23°C indicates that the nuclear reiterated sequences make up 30% of the genome (Cot1/2 (pure) 0.28) and the single-copy DNA 70% (Cot1/2(pure) 70). The complexity of the nuclear genome is 30 x 109 daltons and that of the mitochondrial DNA is 35-40 x 106 daltons (Cot1/2 0.15). rRNA cistrons constitute 2.2% of nuclear DNA and have a ρ = 1.682.
RNA extracted from 4 stages during developmental cycle of Dictyostelium was hybridized with purified single-copy nuclear DNA. The hybrids had properties indicative of single-copy DNA-RNA hybrids. These studies indicate that there are, during development, qualitative and quantitative changes in the portion of the single-copy of the genome transcribed. Overall, 56% of the genome is represented by transcripts between the amoeba and mid-culmination stages. Some 19% are sequences which are represented at all stages while 37% of the genome consists of stage specific sequences.
Part II. RNA and protein synthesis and polysome formation were studied during early development of the surf clam Spisula solidissima embryos. The oocyte has a small number of polysomes and a low but measurable rate of protein synthesis (leucine-3H incorporation). After fertilization, there is a continual increase in the percentage of ribosomes sedimenting in the polysome region. Newly synthesized RNA (uridine-5-3H incorporation) was found in polysomes as early as the 2-cell stage. During cleavage, the newly formed RNA is associated mainly with the light polysomes.
RNA extracted from polysomes labeled at the 4-cell stage is polydisperse, nonribosomal, and non-4 S. Actinomycin D causes a reduction of about 30% of the polysomes formed between fertilization and the 16-cell stage.
In the early cleavage stages the light polysomes are mostly affected by actinomycin.
Resumo:
Part I. Complexes of Biological Bases and Oligonucleotides with RNA
The physical nature of complexes of several biological bases and oligonucleotides with single-stranded ribonucleic acids have been studied by high resolution proton magnetic resonance spectroscopy. The importance of various forces in the stabilization of these complexes is also discussed.
Previous work has shown that purine forms an intercalated complex with single-stranded nucleic acids. This complex formation led to severe and stereospecific broadening of the purine resonances. From the field dependence of the linewidths, T1 measurements of the purine protons and nuclear Overhauser enhancement experiments, the mechanism for the line broadening was ascertained to be dipole-dipole interactions between the purine protons and the ribose protons of the nucleic acid.
The interactions of ethidium bromide (EB) with several RNA residues have been studied. EB forms vertically stacked aggregates with itself as well as with uridine, 3'-uridine monophosphate and 5'-uridine monophosphate and forms an intercalated complex with uridylyl (3' → 5') uridine and polyuridylic acid (poly U). The geometry of EB in the intercalated complex has also been determined.
The effect of chain length of oligo-A-nucleotides on their mode of interaction with poly U in D20 at neutral pD have also been studied. Below room temperatures, ApA and ApApA form a rigid triple-stranded complex involving a stoichiometry of one adenine to two uracil bases, presumably via specific adenine-uracil base pairing and cooperative base stacking of the adenine bases. While no evidence was obtained for the interaction of ApA with poly U above room temperature, ApApA exhibited complex formation of a 1:1 nature with poly U by forming Watson-Crick base pairs. The thermodynamics of these systems are discussed.
Part II. Template Recognition and the Degeneracy of the Genetic Code
The interaction of ApApG and poly U was studied as a model system for the codon-anticodon interaction of tRNA and mRNA in vivo. ApApG was shown to interact with poly U below ~20°C. The interaction was of a 1:1 nature which exhibited the Hoogsteen bonding scheme. The three bases of ApApG are in an anti conformation and the guanosine base appears to be in the lactim tautomeric form in the complex.
Due to the inadequacies of previous models for the degeneracy of the genetic code in explaining the observed interactions of ApApG with poly U, the "tautomeric doublet" model is proposed as a possible explanation of the degenerate interactions of tRNA with mRNA during protein synthesis in vivo.