2 resultados para SEQUENTIAL CONVERGENCE
em Universidad del Rosario, Colombia
Resumo:
Identifying the genetic changes driving adaptive variation in natural populations is key to understanding the origins of biodiversity. The mosaic of mimetic wing patterns in Heliconius butterflies makes an excellent system for exploring adaptive variation using next-generation sequencing. In this study, we use a combination of techniques to annotate the genomic interval modulating red color pattern variation, identify a narrow region responsible for adaptive divergence and convergence in Heliconius wing color patterns, and explore the evolutionary history of these adaptive alleles. We use whole genome resequencing from four hybrid zones between divergent color pattern races of Heliconius erato and two hybrid zones of the co-mimic Heliconius melpomene to examine genetic variation across 2.2 Mb of a partial reference sequence. In the intergenic region near optix, the gene previously shown to be responsible for the complex red pattern variation in Heliconius, population genetic analyses identify a shared 65-kb region of divergence that includes several sites perfectly associated with phenotype within each species. This region likely contains multiple cis-regulatory elements that control discrete expression domains of optix. The parallel signatures of genetic differentiation in H. erato and H. melpomene support a shared genetic architecture between the two distantly related co-mimics; however, phylogenetic analysis suggests mimetic patterns in each species evolved independently. Using a combination of next-generation sequencing analyses, we have refined our understanding of the genetic architecture of wing pattern variation in Heliconius and gained important insights into the evolution of novel adaptive phenotypes in natural populations.
Resumo:
National policies in North America have not been drafted properly to address the problem of climate change, following the impasse of international negotiations. Facing this scenario, new alternatives emerge with the leadership and participation of new actors. Local governments in North America, especially of British Columbia, Ontario and Quebec, have been developing strategies to face climate change and emissions reduction in parallel to the national efforts and the global governance strategies. These local governments have developed a transregional approach that has resulted in the creation of regional institutions such as the Western Climate Initiative, the Regional Greenhouse GasInitiative and the Midwestern GreenhouseGas Reduction Accord.Their main goal is to establish regional carbon markets to mitigate and adapt to climate change impacts in a cost-effective way. In spite of these efforts, these initiatives have faced the overlapping problem among them and with national and globalstrategies. The goal of this research is to explore how these carbon markets have developed convergence policies. Convergence among these markets is expressed in their offset system and in secondary markets.