5 resultados para Genetic Algorithms and Simulated Annealing
em Universidad del Rosario, Colombia
Resumo:
A completely effective vaccine for malaria (one of the major infectious diseases worldwide) is not yet available; different membrane proteins involved in parasite-host interactions have been proposed as candidates for designing it. It has been found that proteins encoded by the merozoite surface protein (msp)-7 multigene family are antibody targets in natural infection; the nucleotide diversity of three Pvmsp-7 genes was thus analyzed in a Colombian parasite population. By contrast with P. falciparum msp-7 loci and ancestral P. vivax msp-7 genes, specie-specific duplicates of the latter specie display high genetic variability, generated by single nucleotide polymorphisms, repeat regions, and recombination. At least three major allele types are present in Pvmsp-7C, Pvmsp-7H and Pvmsp-7I and positive selection seems to be operating on the central region of these msp-7 genes. Although this region has high genetic polymorphism, the C-terminus (Pfam domain ID: PF12948) is conserved and could be an important candidate when designing a subunit-based antimalarial vaccine.
Resumo:
Background Plasmodium vivax is one of the five species causing malaria in human beings, affecting around 391 million people annually. The development of an anti-malarial vaccine has been proposed as an alternative for controlling this disease. However, its development has been hampered by allele-specific responses produced by the high genetic diversity shown by some parasite antigens. Evaluating these antigens’ genetic diversity is thus essential when designing a completely effective vaccine. Methods The gene sequences of Plasmodium vivax p12 (pv12) and p38 (pv38), obtained from field isolates in Colombia, were used for evaluating haplotype polymorphism and distribution by population genetics analysis. The evolutionary forces generating the variation pattern so observed were also determined. Results Both pv12 and pv38 were shown to have low genetic diversity. The neutral model for pv12 could not be discarded, whilst polymorphism in pv38 was maintained by balanced selection restricted to the gene’s 5′ region. Both encoded proteins seemed to have functional/structural constraints due to the presence of s48/45 domains, which were seen to be highly conserved.
Resumo:
A completely effective vaccine for malaria (one of the major infectious diseases worldwide) is not yet available; different membrane proteins involved in parasite-host interactions have been proposed as candidates for designing it. It has been found that proteins encoded by the merozoite surface protein (msp)-7 multigene family are antibody targets in natural infection; the nucleotide diversity of three Pvmsp-7 genes was thus analyzed in a Colombian parasite population. By contrast with P. falciparum msp-7 loci and ancestral P. vivax msp-7 genes, specie-specific duplicates of the latter specie display high genetic variability, generated by single nucleotide polymorphisms, repeat regions, and recombination. At least three major allele types are present in Pvmsp-7C, Pvmsp-7H and Pvmsp-7I and positive selection seems to be operating on the central region of these msp-7 genes. Although this region has high genetic polymorphism, the C-terminus (Pfam domain ID: PF12948) is conserved and could be an important candidate when designing a subunit-based antimalarial vaccine.
Resumo:
La computación evolutiva y muy especialmente los algoritmos genéticos son cada vez más empleados en las organizaciones para resolver sus problemas de gestión y toma de decisiones (Apoteker & Barthelemy, 2000). La literatura al respecto es creciente y algunos estados del arte han sido publicados. A pesar de esto, no hay un trabajo explícito que evalúe de forma sistemática el uso de los algoritmos genéticos en problemas específicos de los negocios internacionales (ejemplos de ello son la logística internacional, el comercio internacional, el mercadeo internacional, las finanzas internacionales o estrategia internacional). El propósito de este trabajo de grado es, por lo tanto, realizar un estado situacional de las aplicaciones de los algoritmos genéticos en los negocios internacionales.
Resumo:
Las organizaciones y sus entornos son sistemas complejos. Tales sistemas son difíciles de comprender y predecir. Pese a ello, la predicción es una tarea fundamental para la gestión empresarial y para la toma de decisiones que implica siempre un riesgo. Los métodos clásicos de predicción (entre los cuales están: la regresión lineal, la Autoregresive Moving Average y el exponential smoothing) establecen supuestos como la linealidad, la estabilidad para ser matemática y computacionalmente tratables. Por diferentes medios, sin embargo, se han demostrado las limitaciones de tales métodos. Pues bien, en las últimas décadas nuevos métodos de predicción han surgido con el fin de abarcar la complejidad de los sistemas organizacionales y sus entornos, antes que evitarla. Entre ellos, los más promisorios son los métodos de predicción bio-inspirados (ej. redes neuronales, algoritmos genéticos /evolutivos y sistemas inmunes artificiales). Este artículo pretende establecer un estado situacional de las aplicaciones actuales y potenciales de los métodos bio-inspirados de predicción en la administración.