11 resultados para Garch
em Universidad del Rosario, Colombia
Resumo:
En este trabajo se estudia el comportamiento de los retornos de los tres principales ´ındices burs´atiles de Colombia: el IBB de la Bolsa de Bogot´a, el IBOMED de la Bolsa de Medell´ın, y el IGBC de Bolsa de Valores de Colombia. A trav´es de un modelo STAR GARCH se identifican dos estados o reg´ımenes extremos, mientras en el primero los rendimientos de los ´ındices son, en t´erminos absolutos, bajos y los procesos son estacionarios, en el segundo se tienen grandes p´erdidas o ganancias, donde los efectos de los choques son permanentes. Aunque en cada uno de los reg´ımenes el efecto del d´ıa de la semana es diferente, los resultados indican que para los tres ´ındices existe un efecto del d´ıa de la semana en la media, y un efecto del d´ıa en la varianza para la Bolsa de Bogot´a y Bolsa de Valores de Colombia. Los resultados contradicen la hip´otesis de un mercado de acciones eficiente en información
Resumo:
Un conjunto de modelos GARCH multivariados son estimados y su validez empírica comparada a partir del cálculo de la medida VaR, para los retornos diarios de la tasa de cambio nominal del peso colombiano con respecto al dólar americano, euro, libra esterlina y yen japonés en el periodo 1999–2005. La comparación de las estimaciones para la matriz de covarianza condicional y los resultados obtenidos para la proporción de fallo y el contraste de cuantil dinámico de Engle y Manganelli (2004) presentan evidencia a favor del modelo de correlación condicional constante.
Resumo:
En este trabajo se estudia el comportamiento de los retornos de los tres principales índices bursátiles de Colombia: el IBB de la Bolsa de Bogotá, el IBOMED de la Bolsa de Medellin, y el IGBC de Bolsa de Valores de Colombia. A través de un modelo STAR GARCH se identifican dos estados o regiones extremos; mientras en el primero los rendimientos de los índices son, en términos absolutos, bajos y los procesos son estacionarios, en el segundo se tienen grandes pérdidas o ganancias, donde los efectos de los choques son permanentes. Aunque en cada uno de los regímenes el efecto del día de la semana es diferente, los resultados indican que para los tres índices existe un efecto del día de la semana en la media, y un efecto del día en la varianza para la Bolsa de Bogotá y Bolsa de Valores de Colombia. Los resultados contradicen la hipótesis de un mercado de acciones efciente en información.
Resumo:
Este texto describe en detalle diversas metodologías que permiten calcular dos medidas utilizadas para cuantificar el riesgo de mercado asociado a un activo financiero: el valor en riesgo VAR y el Expected Shortfall (ES). Los métodos analizados se basan en técnicas estadísticas apropiadas para el caso de series financieras, como son los modelos ARIMA, GARCH y modelos basados en la teoría del valor extremo. Estas metodologías se aplican a las variaciones diarias de la tasa interbancaria de Colombia para el período comprendido entre 1995 y 2004. Los conceptos utilizados en este texto suponen que el lector esté familiarizado con algunos elementos básicos de estadística, series de tiempo y finanzas. Se trata, por tanto, de un texto escrito para estudiantes de economía y finanzas de últimos cursos de pregrado, maestría y para profesionales interesados en el tema.
Resumo:
Este trabajo se concentra en el estudio de los mecanismos de transmisión de información entre las volatilidades del diferencial de tasas de interés de Colombia y Estados Unidos tanto en el corto como en el largo plazo y la tasa de cambio usando tres diferentes tipos de modelos GARCH multivariados, encontrando que hay evidencia de spillovers de volatilidad de los diferenciales de tasas de interés hacia la tasa de cambio, que esta transmisión de información persiste en el tiempo y que los choques exógenos a estos mercados no tienen carácter asimétrico.
Resumo:
En este trabajo se realiza la medición del riesgo de mercado para el portafolio de TES de un banco colombiano determinado, abordando el pronóstico de valor en riesgo (VaR) mediante diferentes modelos multivariados de volatilidad: EWMA, GARCH ortogonal, GARCH robusto, así como distintos modelos de VaR con distribución normal y distribución t-student, evaluando su eficiencia con las metodologías de backtesting propuestas por Candelon et al. (2011) con base en el método generalizado de momentos, junto con los test de independencia y de cobertura condicional planteados por Christoffersen y Pelletier (2004) y por Berkowitz, Christoffersen y Pelletier (2010). Los resultados obtenidos demuestran que la mejor especificación del VaR para la medición del riesgo de mercado del portafolio de TES de los bancos colombianos, es el construido a partir de volatilidades EWMA y basado en la distribución normal, ya que satisface las hipótesis de cobertura no condicional, independencia y cobertura condicional, al igual que los requerimientos estipulados en Basilea II y en la normativa vigente en Colombia.
Resumo:
La dependencia entre las series financieras, es un parámetro fundamental para la estimación de modelos de Riesgo. El Valor en Riesgo (VaR) es una de las medidas más importantes utilizadas para la administración y gestión de Riesgos Financieros, en la actualidad existen diferentes métodos para su estimación, como el método por simulación histórica, el cual no asume ninguna distribución sobre los retornos de los factores de riesgo o activos, o los métodos paramétricos que asumen normalidad sobre las distribuciones. En este documento se introduce la teoría de cópulas, como medida de dependencia entre las series, se estima un modelo ARMA-GARCH-Cópula para el cálculo del Valor en Riesgo de un portafolio compuesto por dos series financiera, la tasa de cambio Dólar-Peso y Euro-Peso. Los resultados obtenidos muestran que la estimación del VaR por medio de copulas es más preciso en relación a los métodos tradicionales.
Resumo:
This paper analyzes the measure of systemic importance ∆CoV aR proposed by Adrian and Brunnermeier (2009, 2010) within the context of a similar class of risk measures used in the risk management literature. In addition, we develop a series of testing procedures, based on ∆CoV aR, to identify and rank the systemically important institutions. We stress the importance of statistical testing in interpreting the measure of systemic importance. An empirical application illustrates the testing procedures, using equity data for three European banks.
Resumo:
In this paper we analyze the spread of shocks across assets markets in eight Latin American countries. First, we measure the extent of markets reactions with the Principal Components Analysis. And second, we investigate the volatility of assets markets based in ARCH-GARCH models in function of the principal components retained in the first stage. Our results do not support the existence of financial contagion, but of interdependence in most of the cases and a slight increase in the sensibility of markets to recent shocks.
Resumo:
Financial integration has been pursued aggressively across the globe in the last fifty years; however, there is no conclusive evidence on the diversification gains (or losses) of such efforts. These gains (or losses) are related to the degree of comovements and synchronization among increasingly integrated global markets. We quantify the degree of comovements within the integrated Latin American market (MILA). We use dynamic correlation models to quantify comovements across securities as well as a direct integration measure. Our results show an increase in comovements when we look at the country indexes, however, the increase in the trend of correlation is previous to the institutional efforts to establish an integrated market in the region. On the other hand, when we look at sector indexes and an integration measure, we find a decreased in comovements among a representative sample of securities form the integrated market.
Resumo:
Este documento revisa y aplica técnicas recientemente desarrolladas para la estimación bayesiana y la selección de modelos en el contexto del modelaje de series de tiempo para la volatilidad estocástica. Luego de ofrecer una revisión de la literatura sobre modelos generalizados autorregresivos condicionales, modelos de volatilidad estocástica y los resultados relevantes en métodos de cadenas de Markov y Montecarlo, se muestra un ejemplo aplicando dichas técnicas. La metodología de siete modelos diferentes se aplica a una serie de tiempo de la tasa de cambio semanal entre Estados Unidos y Colombia. El modelo GARCH, que utiliza una distribución Pearson tipo IV, se prefiere por su técnica de selección (Salto Reversible MCMC) en comparación a otros modelos, entre los cuales se incluyen modelos de volatilidad estocástica con una distribución probabilística T-student.