7 resultados para CTL epitopes for multiple diseases
em Universidad del Rosario, Colombia
Resumo:
Se realizó un estudio genético – poblacional en dos grupos etarios de población colombiana con la finalidad de evaluar las diferencias genéticas relacionadas con el polimorfismo MTHFR 677CT en busca de eventos genéticos que soporten la persistencia de este polimorfismo en la especie humana debido que este ha sido asociado con múltiples enfermedades. De esta manera se genotipificaron los individuos, se analizaron los genotipos, frecuencias alélicas y se realizaron diferentes pruebas genéticas-poblacionales. Contrario a lo observado en poblaciones Colombianas revisadas se identificó la ausencia del Equilibrio Hardy-Weinberg en el grupo de los niños y estructuras poblacionales entre los adultos lo que sugiere diferentes historias demográficas y culturales entre estos dos grupos poblacionales al tiempo, lo que soporta la hipótesis de un evento de selección sobre el polimorfismo en nuestra población. De igual manera nuestros datos fueron analizados junto con estudios previos a nivel nacional y mundial lo cual sustenta que el posible evento selectivo es debido a que el aporte de ácido fólico se ha incrementado durante las últimas dos décadas como consecuencia de las campañas de fortificación de las harinas y suplementación a las embarazadas con ácido fólico, por lo tanto aquí se propone un modelo de selección que se ajusta a los datos encontrados en este trabajo se establece una relación entre los patrones nutricionales de la especie humana a través de la historia que explica las diferencias en frecuencias de este polimorfismo a nivel espacial y temporal.
Resumo:
The prevalence and genetic susceptibility of autoimmune diseases (ADs) may vary depending on latitudinal gradient and ethnicity. The aims of this study were to identify common human leukocyte antigen (HLA) class II alleles that contribute to susceptibility to six ADs in Latin Americans through a meta-analysis and to review additional clinical, immunological, and genetic characteristics of those ADs sharing HLA alleles. DRB1∗03:01 (OR: 4.04; 95%CI: 1.41–11.53) was found to be a risk factor for systemic lupus erythematosus (SLE), Sjogren’s syndrome (SS), and type 1 diabetes mellitus (T1D). DRB1 ¨ ∗04:05 (OR: 4.64; 95%CI: 2.14–10.05) influences autoimmune hepatitis (AIH), rheumatoid arthritis (RA), and T1D; DRB1∗04:01 (OR: 3.86; 95%CI: 2.32–6.42) is a susceptibility factor for RA and T1D. Opposite associations were found between multiple sclerosis (MS) and T1D. DQB1∗06:02 and DRB1∗15 alleles were risk factors for MS but protective factors for T1D. Likewise, DQB1∗06:03 allele was a risk factor for AIH but a protective one for T1D. Several common autoantibodies and clinical associations as well as additional shared genes have been reported in these ADs, which are reviewed herein. These results indicate that in Latin Americans ADs share major loci and immune characteristics.
Resumo:
The age at onset refers to the time period at which an individual experiences the first symptoms of a disease. In autoimmune diseases (ADs), these symptoms can be subtle but are very relevant for diagnosis. They can appear during childhood, adulthood or late in life and may vary depending on the age at onset. Variables like mortality and morbidity and the role of genes will be reviewed with a focus on the major autoimmune disorders, namely, systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), type 1 diabetes mellitus (T1D), Sjögren's syndrome, and autoimmune thyroiditis (AITD). Early age at onset is a worst prognostic factor for some ADs (i.e., SLE and T1D), while for others it does not have a significant influence on the course of disease (i.e., SS) or no unanimous consensus exists (i.e., RA and MS).
Resumo:
Similar pathophysiological mechanisms within autoimmune diseases have stimulated searches for common genetic roots. Polyautoimmunity is defined as the presence of more than one autoimmune disease in a single patient. When three or more autoimmune diseases coexist, this condition is called multiple autoimmune syndrome (MAS). We analyzed the presence of polyautoimmunity in 1,083 patients belonging to four autoimmune disease cohorts. Polyautoimmunity was observed in 373 patients (34.4%). Autoimmune thyroid disease (AITD) and Sjögren's syndrome (SS) were the most frequent diseases encountered. Factors significantly associated with polyautoimmunity were female gender and familial autoimmunity. Through a systematic literature review, an updated search was done for all MAS cases (January 2006–September 2011). There were 142 articles retrieved corresponding to 226 cases. Next, we performed a clustering analysis in which AITD followed by systemic lupus erythematosus and SS were the most hierarchical diseases encountered. Our results indicate that coexistence of autoimmune diseases is not uncommon and follows a grouping pattern. Polyautoimmunity is the term proposed for this association of disorders, which encompasses the concept of a common origin for these diseases.
Resumo:
The multiple autoimmune syndromes (MAS) consist on the presence of three or more well-defined autoimmune diseases (ADs) in a single patient. The aim of this study was to analyze the clinical and genetic characteristics of a large series of patients with MAS. A cluster analysis and familial aggregation analysis of ADs was performed in 84 patients. A genome-wide microsatellite screen was performed in MAS families, and associated loci were investigated through the pedigree disequilibrium test. Systemic lupus erythematosus (SLE), autoimmune thyroid disease (AITD), and Sjögren's syndrome together were the most frequent ADs encountered. Three main clusters were established. Aggregation for type 1 diabetes, AITD, SLE, and all ADs as a trait was found. Eight loci associated with MAS were observed harboring autoimmunity genes. The MAS represent the best example of polyautoimmunity as well as the effect of a single genotype on diverse phenotypes. Its study provides important clues to elucidate the common mechanisms of ADs (i.e., autoimmune tautology). © Springer Science+Business Media, LLC 2012.
Resumo:
Background: Genetic and epigenetic factors interacting with the environment over time are the main causes of complex diseases such as autoimmune diseases (ADs). Among the environmental factors are organic solvents (OSs), which are chemical compounds used routinely in commercial industries. Since controversy exists over whether ADs are caused by OSs, a systematic review and meta-analysis were performed to assess the association between OSs and ADs. Methods and Findings: The systematic search was done in the PubMed, SCOPUS, SciELO and LILACS databases up to February 2012. Any type of study that used accepted classification criteria for ADs and had information about exposure to OSs was selected. Out of a total of 103 articles retrieved, 33 were finally included in the meta-analysis. The final odds ratios (ORs) and 95% confidence intervals (CIs) were obtained by the random effect model. A sensitivity analysis confirmed results were not sensitive to restrictions on the data included. Publication bias was trivial. Exposure to OSs was associated to systemic sclerosis, primary systemic vasculitis and multiple sclerosis individually and also to all the ADs evaluated and taken together as a single trait (OR: 1.54; 95% CI: 1.25-1.92; p-value, 0.001). Conclusion: Exposure to OSs is a risk factor for developing ADs. As a corollary, individuals with non-modifiable risk factors (i.e., familial autoimmunity or carrying genetic factors) should avoid any exposure to OSs in order to avoid increasing their risk of ADs.
Resumo:
Background: A primary characteristic of complex genetic diseases is that affected individuals tend to cluster in families (that is, familial aggregation). Aggregation of the same autoimmune condition, also referred to as familial autoimmune disease, has been extensively evaluated. However, aggregation of diverse autoimmune diseases, also known as familial autoimmunity, has been overlooked. Therefore, a systematic review and meta-analysis were performed aimed at gathering evidence about this topic. Methods: Familial autoimmunity was investigated in five major autoimmune diseases, namely, rheumatoid arthritis, systemic lupus erythematosus, autoimmune thyroid disease, multiple sclerosis and type 1 diabetes mellitus. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines were followed. Articles were searched in Pubmed and Embase databases. Results: Out of a total of 61 articles, 44 were selected for final analysis. Familial autoimmunity was found in all the autoimmune diseases investigated. Aggregation of autoimmune thyroid disease, followed by systemic lupus erythematosus and rheumatoid arthritis, was the most encountered. Conclusions: Familial autoimmunity is a frequently seen condition. Further study of familial autoimmunity will help to decipher the common mechanisms of autoimmunity.