10 resultados para categorical and mix datasets
em Universitat de Girona, Spain
Resumo:
We present a new approach to model and classify breast parenchymal tissue. Given a mammogram, first, we will discover the distribution of the different tissue densities in an unsupervised manner, and second, we will use this tissue distribution to perform the classification. We achieve this using a classifier based on local descriptors and probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature. We studied the influence of different descriptors like texture and SIFT features at the classification stage showing that textons outperform SIFT in all cases. Moreover we demonstrate that pLSA automatically extracts meaningful latent aspects generating a compact tissue representation based on their densities, useful for discriminating on mammogram classification. We show the results of tissue classification over the MIAS and DDSM datasets. We compare our method with approaches that classified these same datasets showing a better performance of our proposal
Resumo:
In CoDaWork’05, we presented an application of discriminant function analysis (DFA) to 4 different compositional datasets and modelled the first canonical variable using a segmented regression model solely based on an observation about the scatter plots. In this paper, multiple linear regressions are applied to different datasets to confirm the validity of our proposed model. In addition to dating the unknown tephras by calibration as discussed previously, another method of mapping the unknown tephras into samples of the reference set or missing samples in between consecutive reference samples is proposed. The application of these methodologies is demonstrated with both simulated and real datasets. This new proposed methodology provides an alternative, more acceptable approach for geologists as their focus is on mapping the unknown tephra with relevant eruptive events rather than estimating the age of unknown tephra. Kew words: Tephrochronology; Segmented regression
Resumo:
We compare correspondance análisis to the logratio approach based on compositional data. We also compare correspondance análisis and an alternative approach using Hellinger distance, for representing categorical data in a contingency table. We propose a coefficient which globally measures the similarity between these approaches. This coefficient can be decomposed into several components, one component for each principal dimension, indicating the contribution of the dimensions to the difference between the two representations. These three methods of representation can produce quite similar results. One illustrative example is given
Resumo:
The application of Discriminant function analysis (DFA) is not a new idea in the study of tephrochrology. In this paper, DFA is applied to compositional datasets of two different types of tephras from Mountain Ruapehu in New Zealand and Mountain Rainier in USA. The canonical variables from the analysis are further investigated with a statistical methodology of change-point problems in order to gain a better understanding of the change in compositional pattern over time. Finally, a special case of segmented regression has been proposed to model both the time of change and the change in pattern. This model can be used to estimate the age for the unknown tephras using Bayesian statistical calibration
Resumo:
By using suitable parameters, we present a uni¯ed aproach for describing four methods for representing categorical data in a contingency table. These methods include: correspondence analysis (CA), the alternative approach using Hellinger distance (HD), the log-ratio (LR) alternative, which is appropriate for compositional data, and the so-called non-symmetrical correspondence analysis (NSCA). We then make an appropriate comparison among these four methods and some illustrative examples are given. Some approaches based on cumulative frequencies are also linked and studied using matrices. Key words: Correspondence analysis, Hellinger distance, Non-symmetrical correspondence analysis, log-ratio analysis, Taguchi inertia
Resumo:
Theory of compositional data analysis is often focused on the composition only. However in practical applications we often treat a composition together with covariables with some other scale. This contribution systematically gathers and develop statistical tools for this situation. For instance, for the graphical display of the dependence of a composition with a categorical variable, a colored set of ternary diagrams might be a good idea for a first look at the data, but it will fast hide important aspects if the composition has many parts, or it takes extreme values. On the other hand colored scatterplots of ilr components could not be very instructive for the analyst, if the conventional, black-box ilr is used. Thinking on terms of the Euclidean structure of the simplex, we suggest to set up appropriate projections, which on one side show the compositional geometry and on the other side are still comprehensible by a non-expert analyst, readable for all locations and scales of the data. This is e.g. done by defining special balance displays with carefully- selected axes. Following this idea, we need to systematically ask how to display, explore, describe, and test the relation to complementary or explanatory data of categorical, real, ratio or again compositional scales. This contribution shows that it is sufficient to use some basic concepts and very few advanced tools from multivariate statistics (principal covariances, multivariate linear models, trellis or parallel plots, etc.) to build appropriate procedures for all these combinations of scales. This has some fundamental implications in their software implementation, and how might they be taught to analysts not already experts in multivariate analysis
Resumo:
Given a set of images of scenes containing different object categories (e.g. grass, roads) our objective is to discover these objects in each image, and to use this object occurrences to perform a scene classification (e.g. beach scene, mountain scene). We achieve this by using a supervised learning algorithm able to learn with few images to facilitate the user task. We use a probabilistic model to recognise the objects and further we classify the scene based on their object occurrences. Experimental results are shown and evaluated to prove the validity of our proposal. Object recognition performance is compared to the approaches of He et al. (2004) and Marti et al. (2001) using their own datasets. Furthermore an unsupervised method is implemented in order to evaluate the advantages and disadvantages of our supervised classification approach versus an unsupervised one
Resumo:
This paper addresses the application of a PCA analysis on categorical data prior to diagnose a patients data set using a Case-Based Reasoning (CBR) system. The particularity is that the standard PCA techniques are designed to deal with numerical attributes, but our medical data set contains many categorical data and alternative methods as RS-PCA are required. Thus, we propose to hybridize RS-PCA (Regular Simplex PCA) and a simple CBR. Results show how the hybrid system produces similar results when diagnosing a medical data set, that the ones obtained when using the original attributes. These results are quite promising since they allow to diagnose with less computation effort and memory storage
Resumo:
El modelat d'escenes és clau en un gran ventall d'aplicacions que van des de la generació mapes fins a la realitat augmentada. Aquesta tesis presenta una solució completa per a la creació de models 3D amb textura. En primer lloc es presenta un mètode de Structure from Motion seqüencial, a on el model 3D de l'entorn s'actualitza a mesura que s'adquireix nova informació visual. La proposta és més precisa i robusta que l'estat de l'art. També s'ha desenvolupat un mètode online, basat en visual bag-of-words, per a la detecció eficient de llaços. Essent una tècnica completament seqüencial i automàtica, permet la reducció de deriva, millorant la navegació i construcció de mapes. Per tal de construir mapes en àrees extenses, es proposa un algorisme de simplificació de models 3D, orientat a aplicacions online. L'eficiència de les propostes s'ha comparat amb altres mètodes utilitzant diversos conjunts de dades submarines i terrestres.
Resumo:
Aquesta tesi tracta sobre el problema de la navegació per a vehicles submarins autònoms que operen en entorns artificials estructurats com ara ports, canals, plataformes marines i altres escenaris similars. A partir d'una estimació precisa de la posició en aquests entorns, les capacitats dels vehicles submarins s'incrementen notablement i s'obre una porta al seu funcionament autònom. El manteniment, inspecció i vigilància d'instal lacions marines són alguns exemples de possibles aplicacions. Les principals contribucions d'aquesta tesi consisteixen per una banda en el desenvolupament de diferents sistemes de localització per a aquelles situacions on es disposa d'un mapa previ de l'entorn i per l'altra en el desenvolupament d'una nova solució al problema de la Localització i Construcció Simultània de Mapes (SLAM en les seves sigles en anglès), la finalitat del qual és fer que un vehicle autònom creï un mapa de l'entorn desconegut que el rodeja i, al mateix temps, utilitzi aquest mapa per a determinar la seva pròpia posició. S'ha escollit un sonar d'imatges d'escaneig mecànic com a sensor principal per a aquest treball tant pel seu relatiu baix cost com per la seva capacitat per produir una representació detallada de l'entorn. Per altra banda, les particularitats de la seva operació i, especialment, la baixa freqúència a la que es produeixen les mesures, constitueixen els principals inconvenients que s'han hagut d'abordar en les estratègies de localització proposades. Les solucions adoptades per aquests problemes constitueixen una altra contribució d'aquesta tesi. El desenvolupament de vehicles autònoms i el seu ús com a plataformes experimentals és un altre aspecte important d'aquest treball. Experiments portats a terme tant en el laboratori com en escenaris reals d'aplicació han proporcionat les dades necessàries per a provar i avaluar els diferents sistemes de localització proposats.