2 resultados para Works in Progress
em Universitat de Girona, Spain
Resumo:
Des de fa dos cursos, professors de les universitats de Tarragona, Lleida i Girona desenvolupem un projecte d’innovació centrat en el pràcticum dels Estudis de Mestre el qual, a més de les tutories i seminaris, utilitza el portafoli electrònic com a eina d’intercanvi, acompanyament i presentació de les produccions dels i les estudiants. Des del curs 2009-10, i amb un ajut MQD de l’AGAUR, s’experimenta amb aquesta eina Web 2.0 –www.eduportfolio.org– dissenyada per la Université de Montréal, una plataforma que s’està utilitzant actualment als cinc continents. L’Eduportfolio agilitza la relació practicants-tutors i l’assessorament en l’elaboració progressiva de la memòria del Pràcticum i del projecte que els estudiants han de dur a terme a l’escola, i també obre noves possibilitats en aquest període dedicat a la pràctica docent reflexiva
Resumo:
Compositional data naturally arises from the scientific analysis of the chemical composition of archaeological material such as ceramic and glass artefacts. Data of this type can be explored using a variety of techniques, from standard multivariate methods such as principal components analysis and cluster analysis, to methods based upon the use of log-ratios. The general aim is to identify groups of chemically similar artefacts that could potentially be used to answer questions of provenance. This paper will demonstrate work in progress on the development of a documented library of methods, implemented using the statistical package R, for the analysis of compositional data. R is an open source package that makes available very powerful statistical facilities at no cost. We aim to show how, with the aid of statistical software such as R, traditional exploratory multivariate analysis can easily be used alongside, or in combination with, specialist techniques of compositional data analysis. The library has been developed from a core of basic R functionality, together with purpose-written routines arising from our own research (for example that reported at CoDaWork'03). In addition, we have included other appropriate publicly available techniques and libraries that have been implemented in R by other authors. Available functions range from standard multivariate techniques through to various approaches to log-ratio analysis and zero replacement. We also discuss and demonstrate a small selection of relatively new techniques that have hitherto been little-used in archaeometric applications involving compositional data. The application of the library to the analysis of data arising in archaeometry will be demonstrated; results from different analyses will be compared; and the utility of the various methods discussed