7 resultados para Subconjunts borrosos
em Universitat de Girona, Spain
Resumo:
Fonaments de la Matemàtica per al tractament de la Incertesa. Noves aportacions a l’estudi de les Equacions Borroses i de les Equacions Diferencials Borroses. Aplicacions de la Matemàtica de la Incertesa al comportament de models de la teoria econòmica.
Resumo:
Aquesta memòria està estructurada en sis capítols amb l'objectiu final de fonamentar i desenvolupar les eines matemàtiques necessàries per a la classificació de conjunts de subconjunts borrosos. El nucli teòric del treball el formen els capítols 3, 4 i 5; els dos primers són dos capítols de caire més general, i l'últim és una aplicació dels anteriors a la classificació dels països de la Unió Europea en funció de determinades característiques borroses. En el capítol 1 s'analitzen les diferents connectives borroses posant una especial atenció en aquells aspectes que en altres capítols tindran una aplicació específica. És per aquest motiu que s'estudien les ordenacions de famílies de t-normes, donada la seva importància en la transitivitat de les relacions borroses. La verificació del principi del terç exclòs és necessària per assegurar que un conjunt significatiu de mesures borroses generalitzades, introduïdes en el capítol 3, siguin reflexives. Estudiem per a quines t-normes es verifica aquesta propietat i introduïm un nou conjunt de t-normes que verifiquen aquest principi. En el capítol 2 es fa un recorregut general per les relacions borroses centrant-nos en l'estudi de la clausura transitiva per a qualsevol t-norma, el càlcul de la qual és en molts casos fonamental per portar a terme el procés de classificació. Al final del capítol s'exposa un procediment pràctic per al càlcul d'una relació borrosa amb l'ajuda d'experts i de sèries estadístiques. El capítol 3 és un monogràfic sobre mesures borroses. El primer objectiu és relacionar les mesures (o distàncies) usualment utilitzades en les aplicacions borroses amb les mesures conjuntistes crisp. Es tracta d'un enfocament diferent del tradicional enfocament geomètric. El principal resultat és la introducció d'una família parametritzada de mesures que verifiquen unes propietats de caràcter conjuntista prou satisfactòries. L'estudi de la verificació del principi del terç exclòs té aquí la seva aplicació sobre la reflexivitat d'aquestes mesures, que són estudiades amb una certa profunditat en alguns casos particulars. El capítol 4 és, d'entrada, un repàs dels principals resultats i mètodes borrosos per a la classificació dels elements d'un mateix conjunt de subconjunts borrosos. És aquí on s'apliquen els resultats sobre les ordenacions de les famílies de t-normes i t-conormes estudiades en el capítol 1. S'introdueix un nou mètode de clusterització, canviant la matriu de la relació borrosa cada vegada que s'obté un nou clúster. Aquest mètode permet homogeneïtzar la metodologia del càlcul de la relació borrosa amb el mètode de clusterització. El capítol 5 tracta sobre l'agrupació d'objectes de diferent naturalesa; és a dir, subconjunts borrosos que pertanyen a diferents conjunts. Aquesta teoria ja ha estat desenvolupada en el cas binari; aquí, el que es presenta és la seva generalització al cas n-ari. Més endavant s'estudien certs aspectes de les projeccions de la relació sobre un cert espai i el recíproc, l'estudi de cilindres de relacions predeterminades. Una aplicació sobre l'agrupació de les comarques gironines en funció de certes variables borroses es presenta al final del capítol. L'últim capítol és eminentment pràctic, ja que s'aplica allò estudiat principalment en els capítols 3 i 4 a la classificació dels països de la Unió Europea en funció de determinades característiques borroses. Per tal de fer previsions per a anys venidors s'han utilitzat sèries temporals i xarxes neuronals. S'han emprat diverses mesures i mètodes de clusterització per tal de poder comparar els diversos dendogrames que resulten del procés de clusterització. Finalment, als annexos es poden consultar les sèries estadístiques utilitzades, la seva extrapolació, els càlculs per a la construcció de les matrius de les relacions borroses, les matrius de mesura i les seves clausures.
Resumo:
En el sector de la promoció construcció, i en especial, en el subsector de la promoció construcció d'habitatges, l'empresari ha de tenir un bon coneixement de les variables d'entorn ja que la consideració de les mateixes seran fonamentals a l'hora de prendre decisions sobre planificació estratègica. En l'actualitat vivim una fase de canvis socioeconòmics que dificulten la previsió del comportament futur de les variables d'entorn. Per tant, el subjecte decisor es troba en un ambient d'incertesa que s'aguditza per la majoritària presència de factors qualitatius difícils de quantificar. Llavors, l'empresari promotor constructor haurà de recórrer a tècniques operatives de gestió que tinguin present aquesta situació i això serà possible a partir de les eines que ens ofereix la lògica borrosa. Aquesta tesi s'ha estructurat en tres parts: En la primera part, exposem les característiques específiques i l'evolució del sector. En la segona part, expliquem la metodologia i, en la tercera part, exposem diverses aplicacions de la metodologia borrosa per l'establiment de noves estratègies de gestió aplicades al sector objecte d'estudi.
Resumo:
In 2000 the European Statistical Office published the guidelines for developing the Harmonized European Time Use Surveys system. Under such a unified framework, the first Time Use Survey of national scope was conducted in Spain during 2002– 03. The aim of these surveys is to understand human behavior and the lifestyle of people. Time allocation data are of compositional nature in origin, that is, they are subject to non-negativity and constant-sum constraints. Thus, standard multivariate techniques cannot be directly applied to analyze them. The goal of this work is to identify homogeneous Spanish Autonomous Communities with regard to the typical activity pattern of their respective populations. To this end, fuzzy clustering approach is followed. Rather than the hard partitioning of classical clustering, where objects are allocated to only a single group, fuzzy method identify overlapping groups of objects by allowing them to belong to more than one group. Concretely, the probabilistic fuzzy c-means algorithm is conveniently adapted to deal with the Spanish Time Use Survey microdata. As a result, a map distinguishing Autonomous Communities with similar activity pattern is drawn. Key words: Time use data, Fuzzy clustering; FCM; simplex space; Aitchison distance
Resumo:
Our purpose is to provide a set-theoretical frame to clustering fuzzy relational data basically based on cardinality of the fuzzy subsets that represent objects and their complementaries, without applying any crisp property. From this perspective we define a family of fuzzy similarity indexes which includes a set of fuzzy indexes introduced by Tolias et al, and we analyze under which conditions it is defined a fuzzy proximity relation. Following an original idea due to S. Miyamoto we evaluate the similarity between objects and features by means the same mathematical procedure. Joining these concepts and methods we establish an algorithm to clustering fuzzy relational data. Finally, we present an example to make clear all the process
Resumo:
The total energy of molecule in terms of 'fuzzy atoms' presented as sum of one- and two-atomic energy components is described. The divisions of three-dimensional physical space into atomic regions exhibit continuous transition from one to another. The energy components are on chemical energy scale according to proper definitions. The Becke's integration scheme and weight function determines realization of method which permits effective numerical integrations
Resumo:
Es discuteixen breument algunes consideracions sobre l'aplicació de la Teoria dels Conjunts difusos a la Química quàntica. Es demostra aqui que molts conceptes químics associats a la teoria són adequats per ésser connectats amb l'estructura dels Conjunts difusos. També s'explica com algunes descripcions teoriques dels observables quàntics es potencien tractant-les amb les eines associades als esmentats Conjunts difusos. La funció densitat es pren com a exemple de l'ús de distribucions de possibilitat al mateix temps que les distribucions de probabilitat quàntiques