16 resultados para Stereo vision, mutual information
em Universitat de Girona, Spain
Resumo:
Shape complexity has recently received attention from different fields, such as computer vision and psychology. In this paper, integral geometry and information theory tools are applied to quantify the shape complexity from two different perspectives: from the inside of the object, we evaluate its degree of structure or correlation between its surfaces (inner complexity), and from the outside, we compute its degree of interaction with the circumscribing sphere (outer complexity). Our shape complexity measures are based on the following two facts: uniformly distributed global lines crossing an object define a continuous information channel and the continuous mutual information of this channel is independent of the object discretisation and invariant to translations, rotations, and changes of scale. The measures introduced in this paper can be potentially used as shape descriptors for object recognition, image retrieval, object localisation, tumour analysis, and protein docking, among others
Resumo:
The human visual ability to perceive depth looks like a puzzle. We perceive three-dimensional spatial information quickly and efficiently by using the binocular stereopsis of our eyes and, what is mote important the learning of the most common objects which we achieved through living. Nowadays, modelling the behaviour of our brain is a fiction, that is why the huge problem of 3D perception and further, interpretation is split into a sequence of easier problems. A lot of research is involved in robot vision in order to obtain 3D information of the surrounded scene. Most of this research is based on modelling the stereopsis of humans by using two cameras as if they were two eyes. This method is known as stereo vision and has been widely studied in the past and is being studied at present, and a lot of work will be surely done in the future. This fact allows us to affirm that this topic is one of the most interesting ones in computer vision. The stereo vision principle is based on obtaining the three dimensional position of an object point from the position of its projective points in both camera image planes. However, before inferring 3D information, the mathematical models of both cameras have to be known. This step is known as camera calibration and is broadly describes in the thesis. Perhaps the most important problem in stereo vision is the determination of the pair of homologue points in the two images, known as the correspondence problem, and it is also one of the most difficult problems to be solved which is currently investigated by a lot of researchers. The epipolar geometry allows us to reduce the correspondence problem. An approach to the epipolar geometry is describes in the thesis. Nevertheless, it does not solve it at all as a lot of considerations have to be taken into account. As an example we have to consider points without correspondence due to a surface occlusion or simply due to a projection out of the camera scope. The interest of the thesis is focused on structured light which has been considered as one of the most frequently used techniques in order to reduce the problems related lo stereo vision. Structured light is based on the relationship between a projected light pattern its projection and an image sensor. The deformations between the pattern projected into the scene and the one captured by the camera, permits to obtain three dimensional information of the illuminated scene. This technique has been widely used in such applications as: 3D object reconstruction, robot navigation, quality control, and so on. Although the projection of regular patterns solve the problem of points without match, it does not solve the problem of multiple matching, which leads us to use hard computing algorithms in order to search the correct matches. In recent years, another structured light technique has increased in importance. This technique is based on the codification of the light projected on the scene in order to be used as a tool to obtain an unique match. Each token of light is imaged by the camera, we have to read the label (decode the pattern) in order to solve the correspondence problem. The advantages and disadvantages of stereo vision against structured light and a survey on coded structured light are related and discussed. The work carried out in the frame of this thesis has permitted to present a new coded structured light pattern which solves the correspondence problem uniquely and robust. Unique, as each token of light is coded by a different word which removes the problem of multiple matching. Robust, since the pattern has been coded using the position of each token of light with respect to both co-ordinate axis. Algorithms and experimental results are included in the thesis. The reader can see examples 3D measurement of static objects, and the more complicated measurement of moving objects. The technique can be used in both cases as the pattern is coded by a single projection shot. Then it can be used in several applications of robot vision. Our interest is focused on the mathematical study of the camera and pattern projector models. We are also interested in how these models can be obtained by calibration, and how they can be used to obtained three dimensional information from two correspondence points. Furthermore, we have studied structured light and coded structured light, and we have presented a new coded structured light pattern. However, in this thesis we started from the assumption that the correspondence points could be well-segmented from the captured image. Computer vision constitutes a huge problem and a lot of work is being done at all levels of human vision modelling, starting from a)image acquisition; b) further image enhancement, filtering and processing, c) image segmentation which involves thresholding, thinning, contour detection, texture and colour analysis, and so on. The interest of this thesis starts in the next step, usually known as depth perception or 3D measurement.
Resumo:
Aquesta tesi s'emmarca dins del projecte CICYT TAP 1999-0443-C05-01. L'objectiu d'aquest projecte és el disseny, implementació i avaluació de robots mòbils, amb un sistema de control distribuït, sistemes de sensorització i xarxa de comunicacions per realitzar tasques de vigilància. Els robots han de poder-se moure per un entorn reconeixent la posició i orientació dels diferents objectes que l'envolten. Aquesta informació ha de permetre al robot localitzar-se dins de l'entorn on es troba per poder-se moure evitant els possibles obstacles i dur a terme la tasca encomanada. El robot ha de generar un mapa dinàmic de l'entorn que serà utilitzat per localitzar la seva posició. L'objectiu principal d'aquest projecte és aconseguir que un robot explori i construeixi un mapa de l'entorn sense la necessitat de modificar el propi entorn. Aquesta tesi està enfocada en l'estudi de la geometria dels sistemes de visió estereoscòpics formats per dues càmeres amb l'objectiu d'obtenir informació geomètrica 3D de l'entorn d'un vehicle. Aquest objectiu tracta de l'estudi del modelatge i la calibració de càmeres i en la comprensió de la geometria epipolar. Aquesta geometria està continguda en el que s'anomena emph{matriu fonamental}. Cal realitzar un estudi del càlcul de la matriu fonamental d'un sistema estereoscòpic amb la finalitat de reduir el problema de la correspondència entre dos plans imatge. Un altre objectiu és estudiar els mètodes d'estimació del moviment basats en la geometria epipolar diferencial per tal de percebre el moviment del robot i obtenir-ne la posició. Els estudis de la geometria que envolta els sistemes de visió estereoscòpics ens permeten presentar un sistema de visió per computador muntat en un robot mòbil que navega en un entorn desconegut. El sistema fa que el robot sigui capaç de generar un mapa dinàmic de l'entorn a mesura que es desplaça i determinar quin ha estat el moviment del robot per tal de emph{localitzar-se} dins del mapa. La tesi presenta un estudi comparatiu dels mètodes de calibració de càmeres més utilitzats en les últimes dècades. Aquestes tècniques cobreixen un gran ventall dels mètodes de calibració clàssics. Aquest mètodes permeten estimar els paràmetres de la càmera a partir d'un conjunt de punts 3D i de les seves corresponents projeccions 2D en una imatge. Per tant, aquest estudi descriu un total de cinc tècniques de calibració diferents que inclouen la calibració implicita respecte l'explicita i calibració lineal respecte no lineal. Cal remarcar que s'ha fet un gran esforç en utilitzar la mateixa nomenclatura i s'ha estandaritzat la notació en totes les tècniques presentades. Aquesta és una de les dificultats principals a l'hora de poder comparar les tècniques de calibració ja què cada autor defineix diferents sistemes de coordenades i diferents conjunts de paràmetres. El lector és introduït a la calibració de càmeres amb la tècnica lineal i implícita proposada per Hall i amb la tècnica lineal i explicita proposada per Faugeras-Toscani. A continuació es passa a descriure el mètode a de Faugeras incloent el modelatge de la distorsió de les lents de forma radial. Seguidament es descriu el conegut mètode proposat per Tsai, i finalment es realitza una descripció detallada del mètode de calibració proposat per Weng. Tots els mètodes són comparats tant des del punt de vista de model de càmera utilitzat com de la precisió de la calibració. S'han implementat tots aquests mètodes i s'ha analitzat la precisió presentant resultats obtinguts tant utilitzant dades sintètiques com càmeres reals. Calibrant cada una de les càmeres del sistema estereoscòpic es poden establir un conjunt de restriccions geomètri ques entre les dues imatges. Aquestes relacions són el que s'anomena geometria epipolar i estan contingudes en la matriu fonamental. Coneixent la geometria epipolar es pot: simplificar el problema de la correspondència reduint l'espai de cerca a llarg d'una línia epipolar; estimar el moviment d'una càmera quan aquesta està muntada sobre un robot mòbil per realitzar tasques de seguiment o de navegació; reconstruir una escena per aplicacions d'inspecció, propotipatge o generació de motlles. La matriu fonamental s'estima a partir d'un conjunt de punts en una imatges i les seves correspondències en una segona imatge. La tesi presenta un estat de l'art de les tècniques d'estimació de la matriu fonamental. Comença pels mètode lineals com el dels set punts o el mètode dels vuit punts, passa pels mètodes iteratius com el mètode basat en el gradient o el CFNS, fins arribar las mètodes robustos com el M-Estimators, el LMedS o el RANSAC. En aquest treball es descriuen fins a 15 mètodes amb 19 implementacions diferents. Aquestes tècniques són comparades tant des del punt de vista algorísmic com des del punt de vista de la precisió que obtenen. Es presenten el resultats obtinguts tant amb imatges reals com amb imatges sintètiques amb diferents nivells de soroll i amb diferent quantitat de falses correspondències. Tradicionalment, l'estimació del moviment d'una càmera està basada en l'aplicació de la geometria epipolar entre cada dues imatges consecutives. No obstant el cas tradicional de la geometria epipolar té algunes limitacions en el cas d'una càmera situada en un robot mòbil. Les diferencies entre dues imatges consecutives són molt petites cosa que provoca inexactituds en el càlcul de matriu fonamental. A més cal resoldre el problema de la correspondència, aquest procés és molt costós en quant a temps de computació i no és gaire efectiu per aplicacions de temps real. En aquestes circumstàncies les tècniques d'estimació del moviment d'una càmera solen basar-se en el flux òptic i en la geometria epipolar diferencial. En la tesi es realitza un recull de totes aquestes tècniques degudament classificades. Aquests mètodes són descrits unificant la notació emprada i es remarquen les semblances i les diferencies entre el cas discret i el cas diferencial de la geometria epipolar. Per tal de poder aplicar aquests mètodes a l'estimació de moviment d'un robot mòbil, aquest mètodes generals que estimen el moviment d'una càmera amb sis graus de llibertat, han estat adaptats al cas d'un robot mòbil que es desplaça en una superfície plana. Es presenten els resultats obtinguts tant amb el mètodes generals de sis graus de llibertat com amb els adaptats a un robot mòbil utilitzant dades sintètiques i seqüències d'imatges reals. Aquest tesi finalitza amb una proposta de sistema de localització i de construcció d'un mapa fent servir un sistema estereoscòpic situat en un robot mòbil. Diverses aplicacions de robòtica mòbil requereixen d'un sistema de localització amb l'objectiu de facilitar la navegació del vehicle i l'execució del les trajectòries planificades. La localització es sempre relativa al mapa de l'entorn on el robot s'està movent. La construcció de mapes en un entorn desconegut és una tasca important a realitzar per les futures generacions de robots mòbils. El sistema que es presenta realitza la localització i construeix el mapa de l'entorn de forma simultània. A la tesi es descriu el robot mòbil GRILL, que ha estat la plataforma de treball emprada per aquesta aplicació, amb el sistema de visió estereoscòpic que s'ha dissenyat i s'ha muntat en el robot. També es descriu tots el processos que intervenen en el sistema de localització i construcció del mapa. La implementació d'aquest processos ha estat possible gràcies als estudis realitzats i presentats prèviament (calibració de càmeres, estimació de la matriu fonamental, i estimació del moviment) sense els quals no s'hauria pogut plantejar aquest sistema. Finalment es presenten els mapes en diverses trajectòries realitzades pel robot GRILL en el laboratori. Les principals contribucions d'aquest treball són: ·Un estat de l'art sobre mètodes de calibració de càmeres. El mètodes són comparats tan des del punt de vista del model de càmera utilitzat com de la precisió dels mètodes. ·Un estudi dels mètodes d'estimació de la matriu fonamental. Totes les tècniques estudiades són classificades i descrites des d'un punt de vista algorísmic. ·Un recull de les tècniques d'estimació del moviment d'una càmera centrat en el mètodes basat en la geometria epipolar diferencial. Aquestes tècniques han estat adaptades per tal d'estimar el moviment d'un robot mòbil. ·Una aplicació de robòtica mòbil per tal de construir un mapa dinàmic de l'entorn i localitzar-se per mitja d'un sistema estereoscòpic. L'aplicació presentada es descriu tant des del punt de vista del maquinari com del programari que s'ha dissenyat i implementat.
Resumo:
Omnidirectional cameras offer a much wider field of view than the perspective ones and alleviate the problems due to occlusions. However, both types of cameras suffer from the lack of depth perception. A practical method for obtaining depth in computer vision is to project a known structured light pattern on the scene avoiding the problems and costs involved by stereo vision. This paper is focused on the idea of combining omnidirectional vision and structured light with the aim to provide 3D information about the scene. The resulting sensor is formed by a single catadioptric camera and an omnidirectional light projector. It is also discussed how this sensor can be used in robot navigation applications
Resumo:
The absolute necessity of obtaining 3D information of structured and unknown environments in autonomous navigation reduce considerably the set of sensors that can be used. The necessity to know, at each time, the position of the mobile robot with respect to the scene is indispensable. Furthermore, this information must be obtained in the least computing time. Stereo vision is an attractive and widely used method, but, it is rather limited to make fast 3D surface maps, due to the correspondence problem. The spatial and temporal correspondence among images can be alleviated using a method based on structured light. This relationship can be directly found codifying the projected light; then each imaged region of the projected pattern carries the needed information to solve the correspondence problem. We present the most significant techniques, used in recent years, concerning the coded structured light method
Resumo:
In image processing, segmentation algorithms constitute one of the main focuses of research. In this paper, new image segmentation algorithms based on a hard version of the information bottleneck method are presented. The objective of this method is to extract a compact representation of a variable, considered the input, with minimal loss of mutual information with respect to another variable, considered the output. First, we introduce a split-and-merge algorithm based on the definition of an information channel between a set of regions (input) of the image and the intensity histogram bins (output). From this channel, the maximization of the mutual information gain is used to optimize the image partitioning. Then, the merging process of the regions obtained in the previous phase is carried out by minimizing the loss of mutual information. From the inversion of the above channel, we also present a new histogram clustering algorithm based on the minimization of the mutual information loss, where now the input variable represents the histogram bins and the output is given by the set of regions obtained from the above split-and-merge algorithm. Finally, we introduce two new clustering algorithms which show how the information bottleneck method can be applied to the registration channel obtained when two multimodal images are correctly aligned. Different experiments on 2-D and 3-D images show the behavior of the proposed algorithms
Resumo:
In this paper, we present view-dependent information theory quality measures for pixel sampling and scene discretization in flatland. The measures are based on a definition for the mutual information of a line, and have a purely geometrical basis. Several algorithms exploiting them are presented and compare well with an existing one based on depth differences
Resumo:
In this paper, an information theoretic framework for image segmentation is presented. This approach is based on the information channel that goes from the image intensity histogram to the regions of the partitioned image. It allows us to define a new family of segmentation methods which maximize the mutual information of the channel. Firstly, a greedy top-down algorithm which partitions an image into homogeneous regions is introduced. Secondly, a histogram quantization algorithm which clusters color bins in a greedy bottom-up way is defined. Finally, the resulting regions in the partitioning algorithm can optionally be merged using the quantized histogram
Resumo:
One of the key aspects in 3D-image registration is the computation of the joint intensity histogram. We propose a new approach to compute this histogram using uniformly distributed random lines to sample stochastically the overlapping volume between two 3D-images. The intensity values are captured from the lines at evenly spaced positions, taking an initial random offset different for each line. This method provides us with an accurate, robust and fast mutual information-based registration. The interpolation effects are drastically reduced, due to the stochastic nature of the line generation, and the alignment process is also accelerated. The results obtained show a better performance of the introduced method than the classic computation of the joint histogram
Resumo:
Catadioptric sensors are combinations of mirrors and lenses made in order to obtain a wide field of view. In this paper we propose a new sensor that has omnidirectional viewing ability and it also provides depth information about the nearby surrounding. The sensor is based on a conventional camera coupled with a laser emitter and two hyperbolic mirrors. Mathematical formulation and precise specifications of the intrinsic and extrinsic parameters of the sensor are discussed. Our approach overcomes limitations of the existing omni-directional sensors and eventually leads to reduced costs of production
Resumo:
In this paper we present a novel structure from motion (SfM) approach able to infer 3D deformable models from uncalibrated stereo images. Using a stereo setup dramatically improves the 3D model estimation when the observed 3D shape is mostly deforming without undergoing strong rigid motion. Our approach first calibrates the stereo system automatically and then computes a single metric rigid structure for each frame. Afterwards, these 3D shapes are aligned to a reference view using a RANSAC method in order to compute the mean shape of the object and to select the subset of points on the object which have remained rigid throughout the sequence without deforming. The selected rigid points are then used to compute frame-wise shape registration and to extract the motion parameters robustly from frame to frame. Finally, all this information is used in a global optimization stage with bundle adjustment which allows to refine the frame-wise initial solution and also to recover the non-rigid 3D model. We show results on synthetic and real data that prove the performance of the proposed method even when there is no rigid motion in the original sequence
Resumo:
We present a computer vision system that associates omnidirectional vision with structured light with the aim of obtaining depth information for a 360 degrees field of view. The approach proposed in this article combines an omnidirectional camera with a panoramic laser projector. The article shows how the sensor is modelled and its accuracy is proved by means of experimental results. The proposed sensor provides useful information for robot navigation applications, pipe inspection, 3D scene modelling etc
Resumo:
In a search for new sensor systems and new methods for underwater vehicle positioning based on visual observation, this paper presents a computer vision system based on coded light projection. 3D information is taken from an underwater scene. This information is used to test obstacle avoidance behaviour. In addition, the main ideas for achieving stabilisation of the vehicle in front of an object are presented
Resumo:
La percepció per visió es millorada quan es pot gaudir d'un camp de visió ampli. Aquesta tesi es concentra en la percepció visual de la profunditat amb l'ajuda de càmeres omnidireccionals. La percepció 3D s'obté generalment en la visió per computadora utilitzant configuracions estèreo amb el desavantatge del cost computacional elevat a l'hora de buscar els elements visuals comuns entre les imatges. La solució que ofereix aquesta tesi és l'ús de la llum estructurada per resoldre el problema de relacionar les correspondències. S'ha realitzat un estudi sobre els sistemes de visió omnidireccional. S'han avaluat vàries configuracions estèreo i s'ha escollit la millor. Els paràmetres del model són difícils de mesurar directament i, en conseqüència, s'ha desenvolupat una sèrie de mètodes de calibració. Els resultats obtinguts són prometedors i demostren que el sensor pot ésser utilitzat en aplicacions per a la percepció de la profunditat com serien el modelatge de l'escena, la inspecció de canonades, navegació de robots, etc.
Resumo:
La tesis se centra en la Visión por Computador y, más concretamente, en la segmentación de imágenes, la cual es una de las etapas básicas en el análisis de imágenes y consiste en la división de la imagen en un conjunto de regiones visualmente distintas y uniformes considerando su intensidad, color o textura. Se propone una estrategia basada en el uso complementario de la información de región y de frontera durante el proceso de segmentación, integración que permite paliar algunos de los problemas básicos de la segmentación tradicional. La información de frontera permite inicialmente identificar el número de regiones presentes en la imagen y colocar en el interior de cada una de ellas una semilla, con el objetivo de modelar estadísticamente las características de las regiones y definir de esta forma la información de región. Esta información, conjuntamente con la información de frontera, es utilizada en la definición de una función de energía que expresa las propiedades requeridas a la segmentación deseada: uniformidad en el interior de las regiones y contraste con las regiones vecinas en los límites. Un conjunto de regiones activas inician entonces su crecimiento, compitiendo por los píxeles de la imagen, con el objetivo de optimizar la función de energía o, en otras palabras, encontrar la segmentación que mejor se adecua a los requerimientos exprsados en dicha función. Finalmente, todo esta proceso ha sido considerado en una estructura piramidal, lo que nos permite refinar progresivamente el resultado de la segmentación y mejorar su coste computacional. La estrategia ha sido extendida al problema de segmentación de texturas, lo que implica algunas consideraciones básicas como el modelaje de las regiones a partir de un conjunto de características de textura y la extracción de la información de frontera cuando la textura es presente en la imagen. Finalmente, se ha llevado a cabo la extensión a la segmentación de imágenes teniendo en cuenta las propiedades de color y textura. En este sentido, el uso conjunto de técnicas no-paramétricas de estimación de la función de densidad para la descripción del color, y de características textuales basadas en la matriz de co-ocurrencia, ha sido propuesto para modelar adecuadamente y de forma completa las regiones de la imagen. La propuesta ha sido evaluada de forma objetiva y comparada con distintas técnicas de integración utilizando imágenes sintéticas. Además, se han incluido experimentos con imágenes reales con resultados muy positivos.