10 resultados para Smallest space analysis
em Universitat de Girona, Spain
Resumo:
Compositional data analysis motivated the introduction of a complete Euclidean structure in the simplex of D parts. This was based on the early work of J. Aitchison (1986) and completed recently when Aitchinson distance in the simplex was associated with an inner product and orthonormal bases were identified (Aitchison and others, 2002; Egozcue and others, 2003). A partition of the support of a random variable generates a composition by assigning the probability of each interval to a part of the composition. One can imagine that the partition can be refined and the probability density would represent a kind of continuous composition of probabilities in a simplex of infinitely many parts. This intuitive idea would lead to a Hilbert-space of probability densities by generalizing the Aitchison geometry for compositions in the simplex into the set probability densities
Resumo:
One of the disadvantages of old age is that there is more past than future: this, however, may be turned into an advantage if the wealth of experience and, hopefully, wisdom gained in the past can be reflected upon and throw some light on possible future trends. To an extent, then, this talk is necessarily personal, certainly nostalgic, but also self critical and inquisitive about our understanding of the discipline of statistics. A number of almost philosophical themes will run through the talk: search for appropriate modelling in relation to the real problem envisaged, emphasis on sensible balances between simplicity and complexity, the relative roles of theory and practice, the nature of communication of inferential ideas to the statistical layman, the inter-related roles of teaching, consultation and research. A list of keywords might be: identification of sample space and its mathematical structure, choices between transform and stay, the role of parametric modelling, the role of a sample space metric, the underused hypothesis lattice, the nature of compositional change, particularly in relation to the modelling of processes. While the main theme will be relevance to compositional data analysis we shall point to substantial implications for general multivariate analysis arising from experience of the development of compositional data analysis…
Resumo:
Examples of compositional data. The simplex, a suitable sample space for compositional data and Aitchison's geometry. R, a free language and environment for statistical computing and graphics
Resumo:
Developments in the statistical analysis of compositional data over the last two decades have made possible a much deeper exploration of the nature of variability, and the possible processes associated with compositional data sets from many disciplines. In this paper we concentrate on geochemical data sets. First we explain how hypotheses of compositional variability may be formulated within the natural sample space, the unit simplex, including useful hypotheses of subcompositional discrimination and specific perturbational change. Then we develop through standard methodology, such as generalised likelihood ratio tests, statistical tools to allow the systematic investigation of a complete lattice of such hypotheses. Some of these tests are simple adaptations of existing multivariate tests but others require special construction. We comment on the use of graphical methods in compositional data analysis and on the ordination of specimens. The recent development of the concept of compositional processes is then explained together with the necessary tools for a staying- in-the-simplex approach, namely compositional singular value decompositions. All these statistical techniques are illustrated for a substantial compositional data set, consisting of 209 major-oxide and rare-element compositions of metamorphosed limestones from the Northeast and Central Highlands of Scotland. Finally we point out a number of unresolved problems in the statistical analysis of compositional processes
Resumo:
The use of perturbation and power transformation operations permits the investigation of linear processes in the simplex as in a vectorial space. When the investigated geochemical processes can be constrained by the use of well-known starting point, the eigenvectors of the covariance matrix of a non-centred principal component analysis allow to model compositional changes compared with a reference point. The results obtained for the chemistry of water collected in River Arno (central-northern Italy) have open new perspectives for considering relative changes of the analysed variables and to hypothesise the relative effect of different acting physical-chemical processes, thus posing the basis for a quantitative modelling
Resumo:
A novel metric comparison of the appendicular skeleton (fore and hind limb) of different vertebrates using the Compositional Data Analysis (CDA) methodological approach it’s presented. 355 specimens belonging in various taxa of Dinosauria (Sauropodomorpha, Theropoda, Ornithischia and Aves) and Mammalia (Prothotheria, Metatheria and Eutheria) were analyzed with CDA. A special focus has been put on Sauropodomorpha dinosaurs and the Aitchinson distance has been used as a measure of disparity in limb elements proportions to infer some aspects of functional morphology
Resumo:
Factor analysis as frequent technique for multivariate data inspection is widely used also for compositional data analysis. The usual way is to use a centered logratio (clr) transformation to obtain the random vector y of dimension D. The factor model is then y = Λf + e (1) with the factors f of dimension k < D, the error term e, and the loadings matrix Λ. Using the usual model assumptions (see, e.g., Basilevsky, 1994), the factor analysis model (1) can be written as Cov(y) = ΛΛT + ψ (2) where ψ = Cov(e) has a diagonal form. The diagonal elements of ψ as well as the loadings matrix Λ are estimated from an estimation of Cov(y). Given observed clr transformed data Y as realizations of the random vector y. Outliers or deviations from the idealized model assumptions of factor analysis can severely effect the parameter estimation. As a way out, robust estimation of the covariance matrix of Y will lead to robust estimates of Λ and ψ in (2), see Pison et al. (2003). Well known robust covariance estimators with good statistical properties, like the MCD or the S-estimators (see, e.g. Maronna et al., 2006), rely on a full-rank data matrix Y which is not the case for clr transformed data (see, e.g., Aitchison, 1986). The isometric logratio (ilr) transformation (Egozcue et al., 2003) solves this singularity problem. The data matrix Y is transformed to a matrix Z by using an orthonormal basis of lower dimension. Using the ilr transformed data, a robust covariance matrix C(Z) can be estimated. The result can be back-transformed to the clr space by C(Y ) = V C(Z)V T where the matrix V with orthonormal columns comes from the relation between the clr and the ilr transformation. Now the parameters in the model (2) can be estimated (Basilevsky, 1994) and the results have a direct interpretation since the links to the original variables are still preserved. The above procedure will be applied to data from geochemistry. Our special interest is on comparing the results with those of Reimann et al. (2002) for the Kola project data
Resumo:
A new method for the automated selection of colour features is described. The algorithm consists of two stages of processing. In the first, a complete set of colour features is calculated for every object of interest in an image. In the second stage, each object is mapped into several n-dimensional feature spaces in order to select the feature set with the smallest variables able to discriminate the remaining objects. The evaluation of the discrimination power for each concrete subset of features is performed by means of decision trees composed of linear discrimination functions. This method can provide valuable help in outdoor scene analysis where no colour space has been demonstrated as being the most suitable. Experiment results recognizing objects in outdoor scenes are reported
Resumo:
This paper deals with fault detection and isolation problems for nonlinear dynamic systems. Both problems are stated as constraint satisfaction problems (CSP) and solved using consistency techniques. The main contribution is the isolation method based on consistency techniques and uncertainty space refining of interval parameters. The major advantage of this method is that the isolation speed is fast even taking into account uncertainty in parameters, measurements, and model errors. Interval calculations bring independence from the assumption of monotony considered by several approaches for fault isolation which are based on observers. An application to a well known alcoholic fermentation process model is presented
Resumo:
We present a method for analyzing the curvature (second derivatives) of the conical intersection hyperline at an optimized critical point. Our method uses the projected Hessians of the degenerate states after elimination of the two branching space coordinates, and is equivalent to a frequency calculation on a single Born-Oppenheimer potential-energy surface. Based on the projected Hessians, we develop an equation for the energy as a function of a set of curvilinear coordinates where the degeneracy is preserved to second order (i.e., the conical intersection hyperline). The curvature of the potential-energy surface in these coordinates is the curvature of the conical intersection hyperline itself, and thus determines whether one has a minimum or saddle point on the hyperline. The equation used to classify optimized conical intersection points depends in a simple way on the first- and second-order degeneracy splittings calculated at these points. As an example, for fulvene, we show that the two optimized conical intersection points of C2v symmetry are saddle points on the intersection hyperline. Accordingly, there are further intersection points of lower energy, and one of C2 symmetry - presented here for the first time - is found to be the global minimum in the intersection space