11 resultados para Servicing missions
em Universitat de Girona, Spain
Resumo:
This paper presents the design and implementation of a mission control system (MCS) for an autonomous underwater vehicle (AUV) based on Petri nets. In the proposed approach the Petri nets are used to specify as well as to execute the desired autonomous vehicle mission. The mission is easily described using an imperative programming language called mission control language (MCL) that formally describes the mission execution thread. A mission control language compiler (MCL-C) able to automatically translate the MCL into a Petri net is described and a real-time Petri net player that allows to execute the resulting Petri net onboard an AUV are also presented
Resumo:
When discussing the traditional and new missions of higher education (1996 Report to UNESCO of the International Commission on Education for the 21st Century) Jacques Delors stated that "Excessive attraction to social sciences has broken equilibrium of available graduates for workforce, thus causing doubts of graduates and employers on the quality of knowledge provided by higher education". Likewise, when discussing the progress of science and technology, the 1998 UNESCO World Conference on Higher Education concluded that "Another challenge concerts the latest advancements of Science, the sine qua non of sustainable development"; and that “with Information Technology, the unavoidable invasion of virtual reality has increased the distance between industrial and developing countries". Recreational Science has a long tradition all over the Educational World; it aims to show the basic aspects of Science, aims to entertain, and aims to induce thinking. Until a few years ago, this field of knowledge consisted of a few books, a few kits and other classical (yet innovative) ways to popularize the knowledge of Nature and the laws governing it. In Spain, the interest for recreational science has increased in the last years. First, new recreational books are being published and found in bookstores. Second the number of Science-related museums and exhibits is increasing. And third, new television shows are produced and new short science-based, superficial sketches are found in variety programs. However, actual programs in Spanish television dealing seriously with Science are scarce. Recreational Science, especially that related to physical phenomena like light or motion, is generally found at Science Museums because special equipment is required. On the contrary, Science related mathematics, quizzes and puzzles use to gather into books, e.g. the extensive collections by Martin Gardner. However, lately Science podcasts have entered the field of science communication. Not only traditional science journals and television channels are providing audio and video podcasts, but new websites deal exclusively with science podcasts, in particular on Recreational Science. In this communication we discuss the above mentioned trends and show our experience in the last two years in participating at Science Fairs and university-sponsored events to attract students to science and technology careers. We show a combination of real examples (e.g., mathemagic), imagination, use of information technology, and use of social networks. We present as well an experience on designing a computational, interactive tool to promote chemistry among high school, prospective students using computers ("Dancing with Bionanomolecules"). Like the concepts related to Web 2.0, it has been already proposed that a new framework for communication of science is emerging, i.e., Science Communication 2.0, where people and institutions develop new innovative ways to explain science topics to diverse publics – and where Recreational Science is likely to play a leading role
Resumo:
The purpose of this paper is to propose a Neural-Q_learning approach designed for online learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized by a multi-layer neural network allowing the use of continuous states and actions. The algorithm uses a database of the most recent learning samples to accelerate and guarantee the convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive behavior which maps sensorial states to robot control actions. A group of these behaviors constitutes a reactive control scheme designed to fulfill simple missions. The paper centers on the description of the Neural-Q_learning based behaviors showing their performance with an underwater robot in a target following task. Real experiments demonstrate the convergence and stability of the learning system, pointing out its suitability for online robot learning. Advantages and limitations are discussed
Resumo:
Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task
Resumo:
When unmanned underwater vehicles (UUVs) perform missions near the ocean floor, optical sensors can be used to improve local navigation. Video mosaics allow to efficiently process the images acquired by the vehicle, and also to obtain position estimates. We discuss in this paper the role of lens distortions in this context, proving that degenerate mosaics have their origin not only in the selected motion model or in registration errors, but also in the cumulative effect of radial distortion residuals. Additionally, we present results on the accuracy of different feature-based approaches for self-correction of lens distortions that may guide the choice of appropriate techniques for correcting distortions
Resumo:
This paper presents a complete control architecture that has been designed to fulfill predefined missions with an autonomous underwater vehicle (AUV). The control architecture has three levels of control: mission level, task level and vehicle level. The novelty of the work resides in the mission level, which is built with a Petri network that defines the sequence of tasks that are executed depending on the unpredictable situations that may occur. The task control system is composed of a set of active behaviours and a coordinator that selects the most appropriate vehicle action at each moment. The paper focuses on the design of the mission controller and its interaction with the task controller. Simulations, inspired on an industrial underwater inspection of a dam grate, show the effectiveness of the control architecture
Resumo:
This paper surveys control architectures proposed in the literature and describes a control architecture that is being developed for a semi-autonomous underwater vehicle for intervention missions (SAUVIM) at the University of Hawaii. Conceived as hybrid, this architecture has been organized in three layers: planning, control and execution. The mission is planned with a sequence of subgoals. Each subgoal has a related task supervisor responsible for arranging a set of pre-programmed task modules in order to achieve the subgoal. Task modules are the key concept of the architecture. They are the main building blocks and can be dynamically re-arranged by the task supervisor. In our architecture, deliberation takes place at the planning layer while reaction is dealt through the parallel execution of the task modules. Hence, the system presents both a hierarchical and an heterarchical decomposition, being able to show a predictable response while keeping rapid reactivity to the dynamic environment
Resumo:
Estudi realitzat pels membres de la Càtedra UNESCO de Polítiques Culturals i Cooperació amb l'objectiu d'analitzar les relacions que s’estableixen entre la UdG i els altres actors culturals del territori. Aquest treball ha de servir per conscienciar, a dins i a fora de la UdG, del paper que té la Universitat i de l’actuació que ha de fer en l’àmbit cultural. Amb l'estudi volem posar a disposició de la comunitat universitària i, en especial dels òrgans, centres, unitats i persones que en són destinataris, tot un seguit de propostes en relació amb la política universitària, en aspectes estructurals, de gestió i comunicació, orientades sempre a l’obertura de les nostres missions de formació, recerca i transferència
Resumo:
The presented work focuses on the theoretical and practical aspects concerning the design and development of a formal method to build a mission control system for autonomous underwater vehicles bringing systematic design principles for the formal description of missions using Petri nets. The proposed methodology compounds Petri net building blocks within it to de_ne a mission plan for which it is proved that formal properties, such as reachability and reusability, hold as long as these same properties are also guaranteed by each Petri net building block. To simplify the de_nition of these Petri net blocks as well as their composition, a high level language called Mission Control Language has been developed. Moreover, a methodology to ensure coordination constraints for teams of multiple robots as well as the de_nition of an interface between the proposed system and an on-board planner able to plan/replan sequences of prede_ned mission plans is included as well. Results of experiments with several real underwater vehicles and simulations involving an autonomous surface craft and an autonomous underwater vehicles are presented to show the system's capabilities.
Resumo:
Simultaneous Localization and Mapping (SLAM) do not result in consistent maps of large areas because of gradual increase of the uncertainty for long term missions. In addition, as the size of the map grows the computational cost increases, making SLAM solutions unsuitable for on-line applications. This thesis surveys SLAM approaches paying special attention to those approaches aimed to work on large scenarios. Special focus is given to existing underwater SLAM applications. A technique based on using independent local maps together with a global stochastic map is presented. This technique is called Selective Submap Joining SLAM (SSJS). A global map contains relative transformations between local maps, which are updated once a new loop is detected. Maps sharing several features are fused, maintaining the correlation between landmarks and vehicle's pose. The use of local maps reduces computational costs and improves map consistency as compared to state of the art techniques.
Resumo:
Aquesta tesi proposa l'ús d'un seguit de tècniques pel control a alt nivell d'un robot autònom i també per l'aprenentatge automàtic de comportaments. L'objectiu principal de la tesis fou el de dotar d'intel·ligència als robots autònoms que han d'acomplir unes missions determinades en entorns desconeguts i no estructurats. Una de les premisses tingudes en compte en tots els passos d'aquesta tesis va ser la selecció d'aquelles tècniques que poguessin ésser aplicades en temps real, i demostrar-ne el seu funcionament amb experiments reals. El camp d'aplicació de tots els experiments es la robòtica submarina. En una primera part, la tesis es centra en el disseny d'una arquitectura de control que ha de permetre l'assoliment d'una missió prèviament definida. En particular, la tesis proposa l'ús de les arquitectures de control basades en comportaments per a l'assoliment de cada una de les tasques que composen la totalitat de la missió. Una arquitectura d'aquest tipus està formada per un conjunt independent de comportaments, els quals representen diferents intencions del robot (ex.: "anar a una posició", "evitar obstacles",...). Es presenta una recerca bibliogràfica sobre aquest camp i alhora es mostren els resultats d'aplicar quatre de les arquitectures basades en comportaments més representatives a una tasca concreta. De l'anàlisi dels resultats se'n deriva que un dels factors que més influeixen en el rendiment d'aquestes arquitectures, és la metodologia emprada per coordinar les respostes dels comportaments. Per una banda, la coordinació competitiva és aquella en que només un dels comportaments controla el robot. Per altra banda, en la coordinació cooperativa el control del robot és realitza a partir d'una fusió de totes les respostes dels comportaments actius. La tesis, proposa un esquema híbrid d'arquitectura capaç de beneficiar-se dels principals avantatges d'ambdues metodologies. En una segona part, la tesis proposa la utilització de l'aprenentatge per reforç per aprendre l'estructura interna dels comportaments. Aquest tipus d'aprenentatge és adequat per entorns desconeguts i el procés d'aprenentatge es realitza al mateix temps que el robot està explorant l'entorn. La tesis presenta també un estat de l'art d'aquest camp, en el que es detallen els principals problemes que apareixen en utilitzar els algoritmes d'aprenentatge per reforç en aplicacions reals, com la robòtica. El problema de la generalització és un dels que més influeix i consisteix en permetre l'ús de variables continues sense augmentar substancialment el temps de convergència. Després de descriure breument les principals metodologies per generalitzar, la tesis proposa l'ús d'una xarxa neural combinada amb l'algoritme d'aprenentatge per reforç Q_learning. Aquesta combinació proporciona una gran capacitat de generalització i una molt bona disposició per aprendre en tasques de robòtica amb exigències de temps real. No obstant, les xarxes neurals són aproximadors de funcions no-locals, el que significa que en treballar amb un conjunt de dades no homogeni es produeix una interferència: aprendre en un subconjunt de l'espai significa desaprendre en la resta de l'espai. El problema de la interferència afecta de manera directa en robòtica, ja que l'exploració de l'espai es realitza sempre localment. L'algoritme proposat en la tesi té en compte aquest problema i manté una base de dades representativa de totes les zones explorades. Així doncs, totes les mostres de la base de dades s'utilitzen per actualitzar la xarxa neural, i per tant, l'aprenentatge és homogeni. Finalment, la tesi presenta els resultats obtinguts amb la arquitectura de control basada en comportaments i l'algoritme d'aprenentatge per reforç. Els experiments es realitzen amb el robot URIS, desenvolupat a la Universitat de Girona, i el comportament après és el seguiment d'un objecte mitjançant visió per computador. La tesi detalla tots els dispositius desenvolupats pels experiments així com les característiques del propi robot submarí. Els resultats obtinguts demostren la idoneïtat de les propostes en permetre l'aprenentatge del comportament en temps real. En un segon apartat de resultats es demostra la capacitat de generalització de l'algoritme d'aprenentatge mitjançant el "benchmark" del "cotxe i la muntanya". Els resultats obtinguts en aquest problema milloren els resultats d'altres metodologies, demostrant la millor capacitat de generalització de les xarxes neurals.