4 resultados para Pecking order theory

em Universitat de Girona, Spain


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The basis set superposition error-free second-order MØller-Plesset perturbation theory of intermolecular interactions was studied. The difficulties of the counterpoise (CP) correction in open-shell systems were also discussed. The calculations were performed by a program which was used for testing the new variants of the theory. It was shown that the CP correction for the diabatic surfaces should be preferred to the adiabatic ones

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an algorithm for computing exact shortest paths, and consequently distances, from a generalized source (point, segment, polygonal chain or polygonal region) on a possibly non-convex polyhedral surface in which polygonal chain or polygon obstacles are allowed. We also present algorithms for computing discrete Voronoi diagrams of a set of generalized sites (points, segments, polygonal chains or polygons) on a polyhedral surface with obstacles. To obtain the discrete Voronoi diagrams our algorithms, exploiting hardware graphics capabilities, compute shortest path distances defined by the sites

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A conceptually new approach is introduced for the decomposition of the molecular energy calculated at the density functional theory level of theory into sum of one- and two-atomic energy components, and is realized in the "fuzzy atoms" framework. (Fuzzy atoms mean that the three-dimensional physical space is divided into atomic regions having no sharp boundaries but exhibiting a continuous transition from one to another.) The new scheme uses the new concept of "bond order density" to calculate the diatomic exchange energy components and gives them unexpectedly close to the values calculated by the exact (Hartree-Fock) exchange for the same Kohn-Sham orbitals

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to explain the speed of Vesicular Stomatitis Virus VSV infections, we develop a simple model that improves previous approaches to the propagation of virus infections. For VSV infections, we find that the delay time elapsed between the adsorption of a viral particle into a cell and the release of its progeny has a very important effect. Moreover, this delay time makes the adsorption rate essentially irrelevant in order to predict VSV infection speeds. Numerical simulations are in agreement with the analytical results. Our model satisfactorily explains the experimentally measured speeds of VSV infections