4 resultados para Multilayer perceptron
em Universitat de Girona, Spain
Resumo:
En este trabajo se presenta Capaware, una plataforma de software libre para el desarrollo de aplicaciones geográficas 3D multicapa, que surge a partir de la iniciativa del Instituto Tecnológico de Canarias en colaboración con la Universidad de Las Palmas de Gran Canaria. Este entorno simplifica la creación de aplicaciones 3D sobre territorios geográficos extensos, disponiendo de una herramienta muy visual que aporta un nuevo punto de vista muy importante para una toma de decisiones eficaz. Capaware proporciona una interfaz fácil de usar y muy flexible que simplifica el desarrollo de nuevas aplicaciones, permitiéndonos crear rápidamente entornos virtuales con múltiples capas de información sobre el terreno. Con las capacidades clásicas de un Sistema de Información Geográfica (SIG), Capaware permite actualmente la carga de capas WMS sobre entornos 3D, añadir objetos 3D sobre el terreno, y visualizar elementos dinámicos, ofreciendo una nueva perspectiva de la información analizada. Así mismo, podemos administrar las capas de recursos y elementos que se pueden representar sobre la zona geográfica en cuestión. (...)
Resumo:
This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs
Resumo:
In this article, a new technique for grooming low-speed traffic demands into high-speed optical routes is proposed. This enhancement allows a transparent wavelength-routing switch (WRS) to aggregate traffic en route over existing optical routes without incurring expensive optical-electrical-optical (OEO) conversions. This implies that: a) an optical route may be considered as having more than one ingress node (all inline) and, b) traffic demands can partially use optical routes to reach their destination. The proposed optical routes are named "lighttours" since the traffic originating from different sources can be forwarded together in a single optical route, i.e., as taking a "tour" over different sources towards the same destination. The possibility of creating lighttours is the consequence of a novel WRS architecture proposed in this article, named "enhanced grooming" (G+). The ability to groom more traffic in the middle of a lighttour is achieved with the support of a simple optical device named lambda-monitor (previously introduced in the RingO project). In this article, we present the new WRS architecture and its advantages. To compare the advantages of lighttours with respect to classical lightpaths, an integer linear programming (ILP) model is proposed for the well-known multilayer problem: traffic grooming, routing and wavelength assignment The ILP model may be used for several objectives. However, this article focuses on two objectives: maximizing the network throughput, and minimizing the number of optical-electro-optical conversions used. Experiments show that G+ can route all the traffic using only half of the total OEO conversions needed by classical grooming. An heuristic is also proposed, aiming at achieving near optimal results in polynomial time
Resumo:
This thesis studies robustness against large-scale failures in communications networks. If failures are isolated, they usually go unnoticed by users thanks to recovery mechanisms. However, such mechanisms are not effective against large-scale multiple failures. Large-scale failures may cause huge economic loss. A key requirement towards devising mechanisms to lessen their impact is the ability to evaluate network robustness. This thesis focuses on multilayer networks featuring separated control and data planes. The majority of the existing measures of robustness are unable to capture the true service degradation in such a setting, because they rely on purely topological features. One of the major contributions of this thesis is a new measure of functional robustness. The failure dynamics is modeled from the perspective of epidemic spreading, for which a new epidemic model is proposed. Another contribution is a taxonomy of multiple, large-scale failures, adapted to the needs and usage of the field of networking.