21 resultados para Model preditive control
em Universitat de Girona, Spain
Resumo:
This work extends a previously developed research concerning about the use of local model predictive control in differential driven mobile robots. Hence, experimental results are presented as a way to improve the methodology by considering aspects as trajectory accuracy and time performance. In this sense, the cost function and the prediction horizon are important aspects to be considered. The aim of the present work is to test the control method by measuring trajectory tracking accuracy and time performance. Moreover, strategies for the integration with perception system and path planning are briefly introduced. In this sense, monocular image data can be used to plan safety trajectories by using goal attraction potential fields
Resumo:
A decentralized model reference controller is designed to reduce the magnitude of the transversal vibration of a flexible cable-stayed beam structure induced by a seismic excitation. The controller design is made based on the principle of sliding mode such that a priori knowledge
Resumo:
Aquesta tesi està inspirada en els agents naturals per tal de planificar de manera dinàmica la navegació d'un robot diferencial de dues rodes. Les dades dels sistemes de percepció són integrades dins una graella d'ocupació de l'entorn local del robot. La planificació de les trajectòries es fa considerant la configuració desitjada del robot, així com els vértexs més significatius dels obstacles més propers. En el seguiment de les trajectòries s'utilitzen tècniques locals de control predictiu basades en el model, amb horitzons de predicció inferiors a un segon. La metodologia emprada és validada mitjançant nombrosos experiments.
Resumo:
Aquest projecte s’aplica sobre el robot PRIM (Plataforma Robotitzada d’Informació Multimèdia), un robot autònom no humanoide creat el 2004 per Ateneu Informàtic (AI) que permet realitzar trajectòries 2D gràcies a un sistema de tracció format per dues rodes motrius propulsades independentment. La plataforma PRIM és controlada a partir del control predictiu, aquest control es va implementar en un projecte anterior, creat per l’Alexandre Blasco Gutierrez i titulat “Implementació de tècniques MPC (Model Predictiu Control) sobre la plataforma PRIM I”. El que es pretén en aquest projecte és millorar els resultats obtinguts en el passat projecte reformulant la llei de control i analitzar les discrepàncies obtingudes en les metodologies que s’utilitzen per minimitzar la funció de costos a partir de simulacions de trajectòries
Resumo:
This research work deals with the problem of modeling and design of low level speed controller for the mobile robot PRIM. The main objective is to develop an effective educational tool. On one hand, the interests in using the open mobile platform PRIM consist in integrating several highly related subjects to the automatic control theory in an educational context, by embracing the subjects of communications, signal processing, sensor fusion and hardware design, amongst others. On the other hand, the idea is to implement useful navigation strategies such that the robot can be served as a mobile multimedia information point. It is in this context, when navigation strategies are oriented to goal achievement, that a local model predictive control is attained. Hence, such studies are presented as a very interesting control strategy in order to develop the future capabilities of the system
Resumo:
This article presents recent WMR (wheeled mobile robot) navigation experiences using local perception knowledge provided by monocular and odometer systems. A local narrow perception horizon is used to plan safety trajectories towards the objective. Therefore, monocular data are proposed as a way to obtain real time local information by building two dimensional occupancy grids through a time integration of the frames. The path planning is accomplished by using attraction potential fields, while the trajectory tracking is performed by using model predictive control techniques. The results are faced to indoor situations by using the lab available platform consisting in a differential driven mobile robot
Resumo:
La tesis pretende explorar acercamientos computacionalmente confiables y eficientes de contractivo MPC para sistemas de tiempo discreto. Dos tipos de contractivo MPC han sido estudiados: MPC con coacción contractiva obligatoria y MPC con una secuencia contractiva de conjuntos controlables. Las técnicas basadas en optimización convexa y análisis de intervalos son aplicadas para tratar MPC contractivo lineal y no lineal, respectivamente. El análisis de intervalos clásicos es ampliado a zonotopes en la geometría para diseñar un conjunto invariante de control terminal para el modo dual de MPC. También es ampliado a intervalos modales para tener en cuenta la modalidad al calcula de conjuntos controlables robustos con una interpretación semántica clara. Los instrumentos de optimización convexa y análisis de intervalos han sido combinados para mejorar la eficacia de contractive MPC para varias clases de sistemas de tiempo discreto inciertos no lineales limitados. Finalmente, los dos tipos dirigidos de contractivo MPC han sido aplicados para controlar un Torneo de Fútbol de Copa Mundial de Micro Robot (MiroSot) y un Tanque-Reactor de Mezcla Continua (CSTR), respectivamente.
Resumo:
Behavior-based navigation of autonomous vehicles requires the recognition of the navigable areas and the potential obstacles. In this paper we describe a model-based objects recognition system which is part of an image interpretation system intended to assist the navigation of autonomous vehicles that operate in industrial environments. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using a rule-based cooperative expert system
Resumo:
This paper presents a control strategy for blood glucose(BG) level regulation in type 1 diabetic patients. To design the controller, model-based predictive control scheme has been applied to a newly developed diabetic patient model. The controller is provided with a feedforward loop to improve meal compensation, a gain-scheduling scheme to account for different BG levels, and an asymmetric cost function to reduce hypoglycemic risk. A simulation environment that has been approved for testing of artificial pancreas control algorithms has been used to test the controller. The simulation results show a good controller performance in fasting conditions and meal disturbance rejection, and robustness against model–patient mismatch and errors in meal estimation
Resumo:
En aquesta tesis s'ha desenvolupat un sistema de control capaç d'optimitzar el funcionament dels Reactors Discontinus Seqüencials dins el camp de l'eliminació de matèria orgànica i nitrogen de les aigües residuals. El sistema de control permet ajustar en línia la durada de les etapes de reacció a partir de mesures directes o indirectes de sondes. En una primera etapa de la tesis s'ha estudiat la calibració de models matemàtics que permeten realitzar fàcilment provatures de diferents estratègies de control. A partir de l'anàlisis de dades històriques s'han plantejat diferents opcions per controlar l'SBR i les més convenients s'han provat mitjançant simulació. Després d'assegurar l'èxit de l'estratègia de control mitjançant simulacions s'ha implementat en una planta semi-industrial. Finalment es planteja l'estructura d'uns sistema supervisor encarregat de controlar el funcionament de l'SBR no només a nivell de fases sinó també a nivell cicle.
Resumo:
En aquest article es resumeixen els resultats publicats en un informe de l' ISS (Istituto Superiore di Sanità) del desembre de 2006, sobre un model matemàtic desenvolupat per un grup de treball que inclou a investigadors de les Universitats de Trento, Pisa i Roma, i els Instituts Nacionals de Salut (Istituto Superiore di Sanità, ISS), per avaluar i mesurar l'impacte de la transmissió i el control de la pandèmia de grip
Resumo:
Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task
Resumo:
We describe a model-based objects recognition system which is part of an image interpretation system intended to assist autonomous vehicles navigation. The system is intended to operate in man-made environments. Behavior-based navigation of autonomous vehicles involves the recognition of navigable areas and the potential obstacles. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using CEES, the C++ embedded expert system shell developed in the Systems Engineering and Automatic Control Laboratory (University of Girona) as a specific rule-based problem solving tool. It has been especially conceived for supporting cooperative expert systems, and uses the object oriented programming paradigm
Resumo:
L’estudi que es realitza en aquest projecte/treball final de carrera queda englobat dins del grup de recerca MICE (Modal Intervals Control and Engeneering), el qual realitza investigacions entorn al control de glucèmia. Aquest grup de recerca vinculat a la Universitat de Girona col•labora amb l’Hospital Universitari Dr. Josep Trueta de Girona. La temàtica principal tractarà de realitzar el control de glucèmia en pacients crítics, que es troben ingressats en la unitat de cures intensives de qualsevol hospital. Com a conseqüència d’aquesta problemàtica, s’ha implementat en un entorn virtual, un pacient el qual simula la situació d’un pacient real en la unitat de cures intensives. El model emprat per a la obtenció del model de pacient virtual és el desenvolupat per Chase et al. (2005), el qual mitjançant variables com l’alimentació enteral i la sensibilitat insulínica, es podien realitzar assajos reals per a validar protocols de control ‘in silico’ per posteriorment realitzar assajos amb població real
Resumo:
This paper discusses predictive motion control of a MiRoSoT robot. The dynamic model of the robot is deduced by taking into account the whole process - robot, vision, control and transmission systems. Based on the obtained dynamic model, an integrated predictive control algorithm is proposed to position precisely with either stationary or moving obstacle avoidance. This objective is achieved automatically by introducing distant constraints into the open-loop optimization of control inputs. Simulation results demonstrate the feasibility of such control strategy for the deduced dynamic model