28 resultados para Intelligent control system
em Universitat de Girona, Spain
Resumo:
This paper presents a complete control architecture that has been designed to fulfill predefined missions with an autonomous underwater vehicle (AUV). The control architecture has three levels of control: mission level, task level and vehicle level. The novelty of the work resides in the mission level, which is built with a Petri network that defines the sequence of tasks that are executed depending on the unpredictable situations that may occur. The task control system is composed of a set of active behaviours and a coordinator that selects the most appropriate vehicle action at each moment. The paper focuses on the design of the mission controller and its interaction with the task controller. Simulations, inspired on an industrial underwater inspection of a dam grate, show the effectiveness of the control architecture
Resumo:
The presented work focuses on the theoretical and practical aspects concerning the design and development of a formal method to build a mission control system for autonomous underwater vehicles bringing systematic design principles for the formal description of missions using Petri nets. The proposed methodology compounds Petri net building blocks within it to de_ne a mission plan for which it is proved that formal properties, such as reachability and reusability, hold as long as these same properties are also guaranteed by each Petri net building block. To simplify the de_nition of these Petri net blocks as well as their composition, a high level language called Mission Control Language has been developed. Moreover, a methodology to ensure coordination constraints for teams of multiple robots as well as the de_nition of an interface between the proposed system and an on-board planner able to plan/replan sequences of prede_ned mission plans is included as well. Results of experiments with several real underwater vehicles and simulations involving an autonomous surface craft and an autonomous underwater vehicles are presented to show the system's capabilities.
Resumo:
The thesis involves the development and implementation of a new and robust control system based on permeability trends but at the same time capable of reducing aeration proportionally to permeate flux. Permeability was made a key parameter for directly comparing temporary changes in membrane performance. Transmembrane pressure and flux were gathered every 10 seconds and permeability values were automatically calculated; different mathematical algorithms were applied for the signal filtering of on-line data. Short term and long term permeability trends were compared once a day, and a control action was applied proportionally to the short term/long term permeability ratio without exceeding the aeration flow recommended by the membrane suppliers.
Resumo:
This paper proposes a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot. Although the dominant approach, when using RL, has been to apply value function based algorithms, the system here detailed is characterized by the use of direct policy search methods. Rather than approximating a value function, these methodologies approximate a policy using an independent function approximator with its own parameters, trying to maximize the future expected reward. The policy based algorithm presented in this paper is used for learning the internal state/action mapping of a behavior. In this preliminary work, we demonstrate its feasibility with simulated experiments using the underwater robot GARBI in a target reaching task
Resumo:
This paper deals with the problem of semiactive vibration control of civil engineering structures subject to unknown external disturbances (for example, earthquakes, winds, etc.). Two kinds of semiactive controllers are proposed based on the backstepping control technique. The experimental setup used is a 6-story test structure equipped with shear-mode semiactive magnetorheological dampers being installed in the Washington University Structural Control and Earthquake Engineering Laboratory (WUSCEEL). The experimental results obtained have verified the effectiveness of the proposed control algorithms
Resumo:
This paper proposes a field application of a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot in cable tracking task. The learning system is characterized by using a direct policy search method for learning the internal state/action mapping. Policy only algorithms may suffer from long convergence times when dealing with real robotics. In order to speed up the process, the learning phase has been carried out in a simulated environment and, in a second step, the policy has been transferred and tested successfully on a real robot. Future steps plan to continue the learning process on-line while on the real robot while performing the mentioned task. We demonstrate its feasibility with real experiments on the underwater robot ICTINEU AUV
Resumo:
Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task
Resumo:
This paper presents the design and implementation of a mission control system (MCS) for an autonomous underwater vehicle (AUV) based on Petri nets. In the proposed approach the Petri nets are used to specify as well as to execute the desired autonomous vehicle mission. The mission is easily described using an imperative programming language called mission control language (MCL) that formally describes the mission execution thread. A mission control language compiler (MCL-C) able to automatically translate the MCL into a Petri net is described and a real-time Petri net player that allows to execute the resulting Petri net onboard an AUV are also presented
Resumo:
A long development time is needed from the design to the implementation of an AUV. During the first steps, simulation plays an important role, since it allows for the development of preliminary versions of the control system to be integrated. Once the robot is ready, the control systems are implemented, tuned and tested. The use of a real-time simulator can help closing the gap between off-line simulation and real testing using the already implemented robot. When properly interfaced with the robot hardware, a real-time graphical simulation with a "hardware in the loop" configuration, can allow for the testing of the implemented control system running in the actual robot hardware. Hence, the development time is drastically reduced. These paper overviews the field of graphical simulators used for AUV development proposing a classification. It also presents NEPTUNE, a multi-vehicle, real-time, graphical simulator based on OpenGL that allows hardware in the loop simulations
Resumo:
L’estudi que es realitza en aquest projecte/treball final de carrera queda englobat dins del grup de recerca MICE (Modal Intervals Control and Engeneering), el qual realitza investigacions entorn al control de glucèmia. Aquest grup de recerca vinculat a la Universitat de Girona col•labora amb l’Hospital Universitari Dr. Josep Trueta de Girona. La temàtica principal tractarà de realitzar el control de glucèmia en pacients crítics, que es troben ingressats en la unitat de cures intensives de qualsevol hospital. Com a conseqüència d’aquesta problemàtica, s’ha implementat en un entorn virtual, un pacient el qual simula la situació d’un pacient real en la unitat de cures intensives. El model emprat per a la obtenció del model de pacient virtual és el desenvolupat per Chase et al. (2005), el qual mitjançant variables com l’alimentació enteral i la sensibilitat insulínica, es podien realitzar assajos reals per a validar protocols de control ‘in silico’ per posteriorment realitzar assajos amb població real
Resumo:
Process supervision is the activity focused on monitoring the process operation in order to deduce conditions to maintain the normality including when faults are present Depending on the number/distribution/heterogeneity of variables, behaviour situations, sub-processes, etc. from processes, human operators and engineers do not easily manipulate the information. This leads to the necessity of automation of supervision activities. Nevertheless, the difficulty to deal with the information complicates the design and development of software applications. We present an approach called "integrated supervision systems". It proposes multiple supervisors coordination to supervise multiple sub-processes whose interactions permit one to supervise the global process
Resumo:
Expert supervision systems are software applications specially designed to automate process monitoring. The goal is to reduce the dependency on human operators to assure the correct operation of a process including faulty situations. Construction of this kind of application involves an important task of design and development in order to represent and to manipulate process data and behaviour at different degrees of abstraction for interfacing with data acquisition systems connected to the process. This is an open problem that becomes more complex with the number of variables, parameters and relations to account for the complexity of the process. Multiple specialised modules tuned to solve simpler tasks that operate under a co-ordination provide a solution. A modular architecture based on concepts of software agents, taking advantage of the integration of diverse knowledge-based techniques, is proposed for this purpose. The components (software agents, communication mechanisms and perception/action mechanisms) are based on ICa (Intelligent Control architecture), software middleware supporting the build-up of applications with software agent features
Resumo:
The main objective of this paper aims at developing a methodology that takes into account the human factor extracted from the data base used by the recommender systems, and which allow to resolve the specific problems of prediction and recommendation. In this work, we propose to extract the user's human values scale from the data base of the users, to improve their suitability in open environments, such as the recommender systems. For this purpose, the methodology is applied with the data of the user after interacting with the system. The methodology is exemplified with a case study
Identification and Semiactive Control of Smart Structures Equipped with Magnetorheological Actuators
Resumo:
This paper deals with the problem of identification and semiactive control of smart structures subject to unknown external disturbances such as earthquake, wind, etc. The experimental setup used is a 6-story test structure equipped with shear-mode semiactive magnetorheological actuators being installed in WUSCEEL. The experimental results obtained have verified the effectiveness of the proposed control algorithms
Resumo:
This paper introduces how artificial intelligence technologies can be integrated into a known computer aided control system design (CACSD) framework, Matlab/Simulink, using an object oriented approach. The aim is to build a framework to aid supervisory systems analysis, design and implementation. The idea is to take advantage of an existing CACSD framework, Matlab/Simulink, so that engineers can proceed: first to design a control system, and then to design a straightforward supervisory system of the control system in the same framework. Thus, expert systems and qualitative reasoning tools are incorporated into this popular CACSD framework to develop a computer aided supervisory system design (CASSD) framework. Object-variables an introduced into Matlab/Simulink for sharing information between tools