4 resultados para Generalized Gaussian-noise
em Universitat de Girona, Spain
Resumo:
The accuracy of a 3D reconstruction using laser scanners is significantly determined by the detection of the laser stripe. Since the energy pattern of such a stripe corresponds to a Gaussian profile, it makes sense to detect the point of maximum light intensity (or peak) by computing the zero-crossing point of the first derivative of such Gaussian profile. However, because noise is present in every physical process, such as electronic image formation, it is not sensitive to perform the derivative of the image of the stripe in almost any situation, unless a previous filtering stage is done. Considering that stripe scanning is an inherently row-parallel process, every row of a given image must be processed independently in order to compute its corresponding peak position in the row. This paper reports on the use of digital filtering techniques in order to cope with the scanning of different surfaces with different optical properties and different noise levels, leading to the proposal of a more accurate numerical peak detector, even at very low signal-to-noise ratios
Resumo:
We present algorithms for computing approximate distance functions and shortest paths from a generalized source (point, segment, polygonal chain or polygonal region) on a weighted non-convex polyhedral surface in which obstacles (represented by polygonal chains or polygons) are allowed. We also describe an algorithm for discretizing, by using graphics hardware capabilities, distance functions. Finally, we present algorithms for computing discrete k-order Voronoi diagrams
Resumo:
We present an algorithm for computing exact shortest paths, and consequently distances, from a generalized source (point, segment, polygonal chain or polygonal region) on a possibly non-convex polyhedral surface in which polygonal chain or polygon obstacles are allowed. We also present algorithms for computing discrete Voronoi diagrams of a set of generalized sites (points, segments, polygonal chains or polygons) on a polyhedral surface with obstacles. To obtain the discrete Voronoi diagrams our algorithms, exploiting hardware graphics capabilities, compute shortest path distances defined by the sites
Resumo:
The author studies random walk estimators for radiosity with generalized absorption probabilities. That is, a path will either die or survive on a patch according to an arbitrary probability. The estimators studied so far, the infinite path length estimator and finite path length one, can be considered as particular cases. Practical applications of the random walks with generalized probabilities are given. A necessary and sufficient condition for the existence of the variance is given, together with heuristics to be used in practical cases. The optimal probabilities are also found for the case when one is interested in the whole scene, and are equal to the reflectivities