11 resultados para Euclidean isometry
em Universitat de Girona, Spain
Resumo:
In this paper we present a novel structure from motion (SfM) approach able to infer 3D deformable models from uncalibrated stereo images. Using a stereo setup dramatically improves the 3D model estimation when the observed 3D shape is mostly deforming without undergoing strong rigid motion. Our approach first calibrates the stereo system automatically and then computes a single metric rigid structure for each frame. Afterwards, these 3D shapes are aligned to a reference view using a RANSAC method in order to compute the mean shape of the object and to select the subset of points on the object which have remained rigid throughout the sequence without deforming. The selected rigid points are then used to compute frame-wise shape registration and to extract the motion parameters robustly from frame to frame. Finally, all this information is used in a global optimization stage with bundle adjustment which allows to refine the frame-wise initial solution and also to recover the non-rigid 3D model. We show results on synthetic and real data that prove the performance of the proposed method even when there is no rigid motion in the original sequence
Resumo:
Observations in daily practice are sometimes registered as positive values larger then a given threshold α. The sample space is in this case the interval (α,+∞), α > 0, which can be structured as a real Euclidean space in different ways. This fact opens the door to alternative statistical models depending not only on the assumed distribution function, but also on the metric which is considered as appropriate, i.e. the way differences are measured, and thus variability
Resumo:
Compositional data analysis motivated the introduction of a complete Euclidean structure in the simplex of D parts. This was based on the early work of J. Aitchison (1986) and completed recently when Aitchinson distance in the simplex was associated with an inner product and orthonormal bases were identified (Aitchison and others, 2002; Egozcue and others, 2003). A partition of the support of a random variable generates a composition by assigning the probability of each interval to a part of the composition. One can imagine that the partition can be refined and the probability density would represent a kind of continuous composition of probabilities in a simplex of infinitely many parts. This intuitive idea would lead to a Hilbert-space of probability densities by generalizing the Aitchison geometry for compositions in the simplex into the set probability densities
Resumo:
The simplex, the sample space of compositional data, can be structured as a real Euclidean space. This fact allows to work with the coefficients with respect to an orthonormal basis. Over these coefficients we apply standard real analysis, inparticular, we define two different laws of probability trought the density function and we study their main properties
Resumo:
R from http://www.r-project.org/ is ‘GNU S’ – a language and environment for statistical computing and graphics. The environment in which many classical and modern statistical techniques have been implemented, but many are supplied as packages. There are 8 standard packages and many more are available through the cran family of Internet sites http://cran.r-project.org . We started to develop a library of functions in R to support the analysis of mixtures and our goal is a MixeR package for compositional data analysis that provides support for operations on compositions: perturbation and power multiplication, subcomposition with or without residuals, centering of the data, computing Aitchison’s, Euclidean, Bhattacharyya distances, compositional Kullback-Leibler divergence etc. graphical presentation of compositions in ternary diagrams and tetrahedrons with additional features: barycenter, geometric mean of the data set, the percentiles lines, marking and coloring of subsets of the data set, theirs geometric means, notation of individual data in the set . . . dealing with zeros and missing values in compositional data sets with R procedures for simple and multiplicative replacement strategy, the time series analysis of compositional data. We’ll present the current status of MixeR development and illustrate its use on selected data sets
Resumo:
A joint distribution of two discrete random variables with finite support can be displayed as a two way table of probabilities adding to one. Assume that this table has n rows and m columns and all probabilities are non-null. This kind of table can be seen as an element in the simplex of n · m parts. In this context, the marginals are identified as compositional amalgams, conditionals (rows or columns) as subcompositions. Also, simplicial perturbation appears as Bayes theorem. However, the Euclidean elements of the Aitchison geometry of the simplex can also be translated into the table of probabilities: subspaces, orthogonal projections, distances. Two important questions are addressed: a) given a table of probabilities, which is the nearest independent table to the initial one? b) which is the largest orthogonal projection of a row onto a column? or, equivalently, which is the information in a row explained by a column, thus explaining the interaction? To answer these questions three orthogonal decompositions are presented: (1) by columns and a row-wise geometric marginal, (2) by rows and a columnwise geometric marginal, (3) by independent two-way tables and fully dependent tables representing row-column interaction. An important result is that the nearest independent table is the product of the two (row and column)-wise geometric marginal tables. A corollary is that, in an independent table, the geometric marginals conform with the traditional (arithmetic) marginals. These decompositions can be compared with standard log-linear models. Key words: balance, compositional data, simplex, Aitchison geometry, composition, orthonormal basis, arithmetic and geometric marginals, amalgam, dependence measure, contingency table
Resumo:
Theory of compositional data analysis is often focused on the composition only. However in practical applications we often treat a composition together with covariables with some other scale. This contribution systematically gathers and develop statistical tools for this situation. For instance, for the graphical display of the dependence of a composition with a categorical variable, a colored set of ternary diagrams might be a good idea for a first look at the data, but it will fast hide important aspects if the composition has many parts, or it takes extreme values. On the other hand colored scatterplots of ilr components could not be very instructive for the analyst, if the conventional, black-box ilr is used. Thinking on terms of the Euclidean structure of the simplex, we suggest to set up appropriate projections, which on one side show the compositional geometry and on the other side are still comprehensible by a non-expert analyst, readable for all locations and scales of the data. This is e.g. done by defining special balance displays with carefully- selected axes. Following this idea, we need to systematically ask how to display, explore, describe, and test the relation to complementary or explanatory data of categorical, real, ratio or again compositional scales. This contribution shows that it is sufficient to use some basic concepts and very few advanced tools from multivariate statistics (principal covariances, multivariate linear models, trellis or parallel plots, etc.) to build appropriate procedures for all these combinations of scales. This has some fundamental implications in their software implementation, and how might they be taught to analysts not already experts in multivariate analysis
Resumo:
Self-organizing maps (Kohonen 1997) is a type of artificial neural network developed to explore patterns in high-dimensional multivariate data. The conventional version of the algorithm involves the use of Euclidean metric in the process of adaptation of the model vectors, thus rendering in theory a whole methodology incompatible with non-Euclidean geometries. In this contribution we explore the two main aspects of the problem: 1. Whether the conventional approach using Euclidean metric can shed valid results with compositional data. 2. If a modification of the conventional approach replacing vectorial sum and scalar multiplication by the canonical operators in the simplex (i.e. perturbation and powering) can converge to an adequate solution. Preliminary tests showed that both methodologies can be used on compositional data. However, the modified version of the algorithm performs poorer than the conventional version, in particular, when the data is pathological. Moreover, the conventional ap- proach converges faster to a solution, when data is \well-behaved". Key words: Self Organizing Map; Artificial Neural networks; Compositional data
Resumo:
The preceding two editions of CoDaWork included talks on the possible consideration of densities as infinite compositions: Egozcue and D´ıaz-Barrero (2003) extended the Euclidean structure of the simplex to a Hilbert space structure of the set of densities within a bounded interval, and van den Boogaart (2005) generalized this to the set of densities bounded by an arbitrary reference density. From the many variations of the Hilbert structures available, we work with three cases. For bounded variables, a basis derived from Legendre polynomials is used. For variables with a lower bound, we standardize them with respect to an exponential distribution and express their densities as coordinates in a basis derived from Laguerre polynomials. Finally, for unbounded variables, a normal distribution is used as reference, and coordinates are obtained with respect to a Hermite-polynomials-based basis. To get the coordinates, several approaches can be considered. A numerical accuracy problem occurs if one estimates the coordinates directly by using discretized scalar products. Thus we propose to use a weighted linear regression approach, where all k- order polynomials are used as predictand variables and weights are proportional to the reference density. Finally, for the case of 2-order Hermite polinomials (normal reference) and 1-order Laguerre polinomials (exponential), one can also derive the coordinates from their relationships to the classical mean and variance. Apart of these theoretical issues, this contribution focuses on the application of this theory to two main problems in sedimentary geology: the comparison of several grain size distributions, and the comparison among different rocks of the empirical distribution of a property measured on a batch of individual grains from the same rock or sediment, like their composition
Resumo:
En aquest article es defineixen uns nous índexs tridimensionals per a la descripció de les molècules a partir de paràmetres derivats de la Teoria de la Semblança Molecular i de les distàncies euclidianes entre els àtoms i les càrregues atòmiques efectives. Aquests indexs, anomenats 3D, s'han aplicat a l'estudi de les relacions estructura-propietat d'una família d'hidrocarburs, i han demostrat una capacitat de descripció de tres propietats de la família (temperatura d'ebullició, temperatura de fusió i densitat) molt més acurada que quan s'utilitzen els indexs 2D clàssics
Resumo:
Aquesta tesi estudia com estimar la distribució de les variables regionalitzades l'espai mostral i l'escala de les quals admeten una estructura d'espai Euclidià. Apliquem el principi del treball en coordenades: triem una base ortonormal, fem estadística sobre les coordenades de les dades, i apliquem els output a la base per tal de recuperar un resultat en el mateix espai original. Aplicant-ho a les variables regionalitzades, obtenim una aproximació única consistent, que generalitza les conegudes propietats de les tècniques de kriging a diversos espais mostrals: dades reals, positives o composicionals (vectors de components positives amb suma constant) són tractades com casos particulars. D'aquesta manera, es generalitza la geostadística lineal, i s'ofereix solucions a coneguts problemes de la no-lineal, tot adaptant la mesura i els criteris de representativitat (i.e., mitjanes) a les dades tractades. L'estimador per a dades positives coincideix amb una mitjana geomètrica ponderada, equivalent a l'estimació de la mediana, sense cap dels problemes del clàssic kriging lognormal. El cas composicional ofereix solucions equivalents, però a més permet estimar vectors de probabilitat multinomial. Amb una aproximació bayesiana preliminar, el kriging de composicions esdevé també una alternativa consistent al kriging indicador. Aquesta tècnica s'empra per estimar funcions de probabilitat de variables qualsevol, malgrat que sovint ofereix estimacions negatives, cosa que s'evita amb l'alternativa proposada. La utilitat d'aquest conjunt de tècniques es comprova estudiant la contaminació per amoníac a una estació de control automàtic de la qualitat de l'aigua de la conca de la Tordera, i es conclou que només fent servir les tècniques proposades hom pot detectar en quins instants l'amoni es transforma en amoníac en una concentració superior a la legalment permesa.