3 resultados para Enhancement of teaching
em Universitat de Girona, Spain
Resumo:
Oxidation of amorphous silicon (a-Si) nanoparticles grown by plasma-enhanced chemical vapor deposition were investigated. Their hydrogen content has a great influence on the oxidation rate at low temperature. When the mass gain is recorded during a heating ramp in dry air, an oxidation process at low temperature is identified with an onset around 250°C. This temperature onset is similar to that of hydrogen desorption. It is shown that the oxygen uptake during this process almost equals the number of hydrogen atoms present in the nanoparticles. To explain this correlation, we propose that oxidation at low temperature is triggered by the process of hydrogen desorption
Resumo:
A review article of the The New England Journal of Medicine refers that almost a century ago, Abraham Flexner, a research scholar at the Carnegie Foundation for the Advancement of Teaching, undertook an assessment of medical education in 155 medical schools in operation in the United States and Canada. Flexner’s report emphasized the nonscientific approach of American medical schools to preparation for the profession, which contrasted with the university-based system of medical education in Germany. At the core of Flexner’s view was the notion that formal analytic reasoning, the kind of thinking integral to the natural sciences, should hold pride of place in the intellectual training of physicians. This idea was pioneered at Harvard University, the University of Michigan, and the University of Pennsylvania in the 1880s, but was most fully expressed in the educational program at Johns Hopkins University, which Flexner regarded as the ideal for medical education. (...)
Resumo:
The classical description of Si oxidation given by Deal and Grove has well-known limitations for thin oxides (below 200 Ã). Among the large number of alternative models published so far, the interfacial emission model has shown the greatest ability to fit the experimental oxidation curves. It relies on the assumption that during oxidation Si interstitials are emitted to the oxide to release strain and that the accumulation of these interstitials near the interface reduces the reaction rate there. The resulting set of differential equations makes it possible to model diverse oxidation experiments. In this paper, we have compared its predictions with two sets of experiments: (1) the pressure dependence for subatmospheric oxygen pressure and (2) the enhancement of the oxidation rate after annealing in inert atmosphere. The result is not satisfactory and raises serious doubts about the model’s correctness