7 resultados para chaîne de Markov
em Ministerio de Cultura, Spain
Resumo:
Comprobar que el aprendizaje sigue el proceso descrito por Markov. Muestra tomada al azar entre los alumnos del Centro de Educación Especial 'Santísimo Cristo de la Misericordia' de Espinardo (Murcia). Está formada por dos grupos de edades comprendidas entre los 6 y 14 años y con características intelectuales distintas. Grupo I: 20 sujetos que se encuentran en el estadio de no conservación. Grupo II: 10 sujetos que se encuentran en estadio intermedio. La investigación se llevó a cabo en el grupo I siguiendo los pasos siguientes: A/ Diagnóstico operatorio para situar a los sujetos en el nivel de no conservación, aunque en distintos subniveles; B/ Aprendizaje operatorio mediante ejercicios con materiales discretos y aprendizaje con materiales continuos a través de 5 situaciones. A lo largo de este aprendizaje se utilizó el test-postest para establecer la adquisición de cada paso y los ejercicios concretos para alcanzar el siguiente. El grupo II sirvió para construir el vector de probabilidad I en la matriz inicial. Material operatorio. El estudio se sitúa en el modelo cognitivo, desde el punto de vista de la Psicología Genética y describe una situación experimental utilizando para el análisis de los datos matrices de transición 3 x 3 con los vectores de probabilidad y vectores de probabilidad obtenidos directamente del proceso de aprendizaje. Las diferencias más altas encontradas entre los vectores de probabilidad de los aprendizajes y los vectores de probabilidad de la matriz de transición, fueron menores del 3. En este estudio se han encontrado hasta 11 conductas en la adquisición de la conservación de la cantidad. Se ha comprobado con esta investigación que el aprendizaje de la conservación del número sigue un modelo markoviano, y se termina exponiendo que es posible establecer una matriz de transición 11 x 11 con estimadores de máxima probabilidad para los parámetros con el fin de poder establecer si los 11 niveles son genéticamente diferentes por donde han de pasar los individuos en la adquisición del concepto de número, o son conductas distintas del mismo nivel genético.
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
Completar los objetivos de las fases anteriores: comportamientos de los grupos de alumnos según el profesor y la naturaleza de cada grupo. Diferencias del nivel alcanzado en BUP y en COU. Contrastar la homogeneidad o no del comportamiento global en teoría y en la práctica. Escuelas y Colegios Universitarios de Granada y Bilbao. Centros de EGB y Bachillerato de Granada, Bilbao y Málaga. Centros privados y centros de enseñanza profesional. Centros Experimentales de Bachillerato pertenecientes al ICE. Aplicaciones experimentales del análisis de interacción, de la Universidad de Stanford, ampliado mediante las técnicas de las cadenas de Markov. Análisis de la adquisición de objetivos de la taxonomía NLSMA, adaptada en BUP y COU. Pruebas realizadas por los alumnos. Observaciones sistematizadas. Matrices de Markov. Test de hipótesis para cadenas finitas. Test de estacionaridad en cadenas finitas de Markov. Análisis multivariante. Fiabilidad en el método de interacción Amidon-Flanders. Tratamiento en ordenador. Chi cuadrado. Deducen que las observaciones de Flanders estan hechas sobre clases no muy activas. Relación entre el equilibrio-iniciativa-respuesta del profesor y la conducta de iniciativa de los alumnos. Reacción del profesor cuando los alumnos dejan de intervenir. Importancia del contenido. Homogeneidad de varianza entre todos los grupos. La deducción en COU ha pasado a ser homogénea, mientras que hay diferencias en los niveles medios de expresión y aplicación como en segundo de BUP. Los factores 'interpretación' y 'automatismo' por un lado, y 'expresión' y 'aplicación' por otro, están agrupados entre sí; mientras que 'deducción' presenta en principio un carácter más aislado. Sin embargo en COU, los factores agrupados son: interpretación, aplicación, automatismos y deducción. Clasificación de las pruebas realizadas por los alumnos de acuerdo a una taxonomía.
Resumo:
Revisar y analizar los modelos matemáticos elaborados sobre la movilidad social desde unas coordenadas centradas exclusivamente en la profundización y crítica de su formalización, y de forma que exista, explícitamente o de forma múltiple, una relación real o virtual con la educación. Modelos matemáticos de la movilidad social. Descripción teórica de la movilidad social y educación. Estudio de los modelos generados en movilidad social y consideraciones metodológicas de éste. Desarrollo y análisis crítico del modelo de Boudón. Estudio de las cadenas de Markov como instrumento para la comprensión de la movilidad educativa. Conclusiones de la investigación llevada a cabo. Documentos sobre el tema objeto del trabajo. Análisis de documentos. Se encuentran cuatro modelos generales que permiten explicar la paradoja central inherente en las sociedades occidentales industrializadas a partir de la medida de la movilidad social sin y con modelos, y la correspondiente teorización formal sin y con variables intervinientes.
Resumo:
Buscar las raíces históricas de los estudios sobre investigación de conceptos en el marco de la Psicología científica y exponer los elementos previos necesarios y el proceso para la elaboración del modelo matemático de cadenas de Markov, aplicado a la identificación de conceptos, para terminar con la exposición del modelo de Restle. Identificación de conceptos bidimensionales conjuntivos y disyuntivos, con un campo de estímulos de 2 y 3 valores de dimensión. 24 estudiantes de los últimos cursos de varias carreras (Derecho, Económicas, Psicología, etc.). En la primera parte, realiza una aproximación al marco teórico buscando las raíces históricas de los estudios sobre identificación de conceptos en el marco de la Psicología científica. En la segunda parte, realiza estudios matemáticos tendentes a completar aspectos que en la obra que se cita de Restle no aparecen o aparecen un tanto oscuros. Y se establecen las predicciones a modo de hipótesis que han de verificarse en el experimento. En la tercera parte se realiza la verificación del modelo, en un experimento de identificación de conceptos bidimensionales, variando los principios (conjuntivo-disyuntivo) y el número de valores por dimensión del campo de estímulos (2-3). Prueba Chi cuadrado. Prueba t (ad-hoc). Pruebas k2, k3, d3 (ad-hoc). Análisis de varianza. Distribución de frecuencias. Comparación de medias. Representaciones gráficas. Puede decirse que, en líneas generales, los resultados del experimento han sido positivos, y que, por tanto, la validez del modelo Markov para la I. de C. por el método de una hipótesis a la vez queda corrobarada una vez más. Una parte de los hallazgos deductivos obtenidos en la parte teórica de este trabajo, entre los que destaca la predicción apriorística de la proporción de aciertos-errores, también ha sido confirmada. Hay dos resultados estadísticos que no han sido del todo satisfactorios: - El bajo ajuste entre los datos y la distribución fk, según la prueba Chi cuadrado. - El bajo ajuste, en todos los casos, de los datos correspondientes de d3. Respecto al 'aprendizaje gradual' el A. de V. del número de errores refleja un hecho claro: los sujetos que se esforzaron en la solución del problema - que no se limitaron a actuar al azar -, necesitaron probar menos hipótesis (tuvieron menos errores) para aprender el concepto conjuntivo que el disyuntivo. Todo ello parece indicar que los sujetos aprenden algo a lo largo de los ensayos, pero ese algo no se ve reflejado en el modelo de cadena de Markov, porque para este modelo, la probabilidad de solución es siempre constante , y lo que el sujeto va aprendiendo incide precisamente en su probabilidad de solución y no en su probabilidad de acierto.
Resumo:
Ejemplar mecanografiado
Resumo:
Se trata de encontrar los esquemas de conocimiento que el sujeto pone en marcha para construir el concepto de número natural. Es por tanto, un estudio microgenético que trata de proporcionar un modelo psicoeducativo para la enseñanza del número. El muestreo fue aleatorio estratificado (estratos: deficientes, preescolar 1 y preescolar 2); la muestra estaba formada por 124 niños adscritos a colegios públicos y privados de la Región de Murcia. Partiendo del modelo cardinal-ordinal del número la variable utilizada fue la conducta numérica en las pruebas de conservación de las cantidades, utilizadas tradicionalmente, por la Escuela de Ginebra. Para el modelo de aprendizaje, la variable utilizada fue la probabilidad de paso de un nivel a otro. Prueba de conservación de las cantidades (discretas y contínuas) de Piaget con algunas modificaciones. Modelo didáctico a partir de la determinación de las propiedades inherentes a los niveles genéticos encontrados en la investigación. Análisis factorial y análisis de Cluster para agrupar a los sujetos en función de sus respuestas (determinación de niveles genéticos). Cadenas de Markov para representar el modelo de aprendizaje. Análisis jerárquico (Escala de Guttman) para averiguar si los ítems de las pruebas corresponden a una única magnitud psicológica mesurable. Se encontraron siete niveles genéticos en la adquisición del concepto de número natural, que fueron formalizados a partir de las leyes estructurales de grupo y de las relaciones de equivalencia y orden. La determinación de una mayor variedad de niveles genéticos y su formulación permiten elaborar modelos de aprendizaje que sean respetuosos con el desarrollo espontáneo de los esquemas cognitivos del niño y que, al tiempo, permiten un desarrollo más acelerado de estos esquemas, respetando el principio de equilibración mayorante de Piaget.