18 resultados para Manufatura Aditiva
em Ministerio de Cultura, Spain
Resumo:
El objeto de estudio es la resolución de problemas aritméticos verbales de estructura aditiva, es decir, profundizar en la comprensión de los procesos cognitivos, (no heurísticos) que permite que el alumno ser capaz de resolver correctamente un problema. 250 alumnos de segundo ciclo de primaria, la primera versión, y una segunda versión para tercer ciclo, vistos los resultados se opta por aplicar unicamente problemas de dos operaciones en el segundo ciclo de primaria, tercero, cuarto y quinto curso. Consta de tres partes bien diferenciadas,asi como de sus correspondientes conclusiones y bibliografia utilizada. En el primer capítulo, se recoge por una parte , el camino evolutivo que el niño debe recorrer hasta ser capaz de resolver la tarea, una vez sabidas las capacidades necesarias para acometer con éxito esta tarea expondremos modelos teóricos que, desde el ámbito de la simulación por ordenador, han hecho énfasis en la importancia del conocimiento matemático para la resolución de problemas. En el segundo capítulo se centra en la comprensión de los textos, también simulados por ordenador, pero basados en la forma de entender qué supone comprender un problema. El tercer capítulo expone los principales estudios que, a través de la reescritura de problemas, y las expresiones, términos o formas de presentar la información que facilitan o dificultan la tarea. También en este capítulo se refleja la doble naturaleza matemática y textual de los problemas, por lo tanto por un lado se presentan los estudios que han reescrito los problemas de manera que resaltan las operaciones matemáticas entre los conjuntos, y por otro se resaltan los que se han centrado en enunciados más comprensibles desde el punto de vista textual. Finalmente en el capítulo cuarto se sintetizan los modelos que explican el procesamiento conjunto de texto e imagen para explicar cómo y en qué circustancias una imagen ayuda a comprender un texto. Así mismo también se recogen las principales aportaciones de los estudios instruccionales en la resolución de problemas que han incluido imágenes esquemáticas como ayuda para los alumnos con y sin dificultades. El capítulo quinto consta de un diseño, resultado y conclusiones de cuatro estudios empíricos basados tanto en el marco teórico como en los estudios previos recogidos en la primera parte de la tesis. Y por último se ofrecen las respectivas conclusiones, limitaciones en el planteamiento y las posibles aplicaciones y estudios posteriores que ayudarían a ampliar objetivos. 1)De las dos dimensiones de la tarea de resolución de problemas verbales, estos matemática y textual, es la primera de ellas la que en mayor medida determina el nivel de dificultad de los problemas y, por añadidura, qué tipo de ayudas textuales son eficaces para que los alumnos resuelvan los problemas de manera más eficaz.De esta manera, de los dos tipo de reescritura que hemos definido, conceptual/semántica y situacional, ha sido la primera de ellas la que ha ofrecido mejores resultados a lo largo de los 4 estudios empíricos que han conformado la segunda parte de esta tesis doctoral.2) La reescritura conceptual de los problemas verbales de cambio de dos operaciones que hemos diseñado, que resalta las relaciones conceptuales entre los conjuntos del problema, han mostrado ser información relevante para la tarea, produciendo procesamiento efectivo que hace que los sujetos mejoren su rendimiento, pero sólo cuando la tarea se encuentra en la Zona de Desarrollo Próximo del alumno, esto es, cuando la carga intrínseca de la tarea consume los recursos de la memoria de tal manera que parte de esos recursos quedan disponibles para el procesamiento efectivo de la información conceptual.3)La reescritura situacional por sí misma no se ha mostrado como una ayuda eficaz para que los alumnos resuelvan con más éxito los problemas verbales de cambio de dos operaciones. La causa de estos resultados no parece ser que siendo información relevante para la tarea, su procesamiento exceda la capacidad de la memoria de trabajo, ni que la comprensión de la situación resulte demasiado fácil para el alumno, quedando así fuera de su Zona de Desarrollo Próximo, ni, por último, al formato escrito en el que se presenta la tarea, si bien ésta última explicación necesita estudios adicionales. La causa por la que nos inclinamos es que la información situacional por sí sola es información irrelevante para la tarea y su procesamiento genera carga no efectiva para la memoria de trabajo.4) Sólo cuando el alumno tiene activo en la memoria de trabajo cierto grado de conocimiento conceptual, la información situacional, y más concretamente la información temporal, es útil para que el alumno resuelva los problemas difíciles. Problamente, cuando el alumno tiene este conocimiento conceptual en la memoria de trabajo, está en condiciones de proyectar información cualitativa del problema sobre la estructura conceptual, interpretando la estructura temporal del problema en términos conceptuales.5) El modelo SPS de Reusser (1985) no se ajusta a los resultados obtenidos en esta tesis, al menos, tal y como fue propuesto. A diferencia de lo que proponía este modelo, los resultados de los estudios previos y de los nuestros propios indican que la creación de un modelo cualitativo del problema, en el que se representa la estructura intencional, temporal y causal de la situación denotada por el problema, no es un paso obligatorio en el proceso de resolución de problemas, sino una manera alternativa de comprender el problema, pero estrechamente ligada al conocimiento conceptual del que disponga el alumno. Sin esta activación, como hemos señalado en la conclusión 4, la información situacional no es efectiva..
El rol del conocimiento conceptual en la resolución de problemas aritméticos con estructura aditiva.
Resumo:
Resumen tomado de la revista
Resumo:
Resumen basado en el de la publicación
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
Los objetivos de la investigación son: a)Diseñar, elaborar y aplicar programas de intervención para cada uno de los tres Ciclos de Educación Primaria. Fundamentalmente en la resolución de problemas aritméticos. b)Conocer las dificultades que presentan los alumnos de Educación Primaria en los procesos de resolución de problemas.c)Diseñar, elaborar y aplicar programas específicos para alumnos con dificultades en elaprendizaje de las Matemáticas.. dieciséis alumnos. En primer lugar se realizó la evaluación del dominio de los Problemas Aritméticos Elementales Verbales de una sola operación el total de los sujetos de la muestra (N= 16). Elinstrumento utilizado fue la forma A de la Batería de PAEVSO. El orden de aplicación de los problemas se hizo totalmente al azar, con las distintas categorías semánticas y tipos de problemas (con números grandes o pequeños) entremezclados. Las sesiones fueron aplicadas de forma colectiva a lo largo de los trimestres Segundo y Tercero del Curso 1999-2000 y en el curso 2000-2001. Cualquier sesión sigue este esquema general de trabajo: a. Introducción por parte del instructor con los componentes manipulativos. b. Explicación de los componentes gráficos y simbólicos. c. Realización por parte de los sujetos de los demás problemas (En las hojas de las lecciones o sesiones de trabajo). Esta tarea es realizada individualmente, en parejas o en pequeños grupos de cuatro/tres alumnos que es como están agrupados en el aula. El trabajo en pequeño grupo o en parejas procede de forma que se consiga el mayor número de interacciones entre los sujetos.d. Corrección de la tarea. Cuando la mayoría del grupo ha terminado el trabajo, se realiza la corrección. Esta suele ser colectiva, siendo guiada por la maestra. Se discuten las soluciones aportadas por los alumnos, se crea conflicto cognitivo en el caso de soluciones divergentes entre el alumnado. Se hace especial hincapié en la comprobación de la solución volviendo a leerse la pregunta del problema y comprobando si la solución aportada se corresponde con lo pedido. Se ha tenido especial cuidado en el tratamiento los errores cometidos por los alumnos, cuidando de considerarlos como algo natural en el proceso de enseñanza-aprendizaje.En la evaluación final postest se ha aplicado la forma B paralela de la Batería de Problemas Aritméticos Verbales (Junio de 2001) en las mismas condiciones que en el Pretest. Los instrumentos utilizados son:Baterías de Problemas Aritméticos Elementales Verbales (PAEVSO). Formas A y B,(Aguilar, 1996). (2) Programa Instruccional en Resolución de Problemas Aritméticos Elementales Verbales de una Sola Operación que consta de 25 sesiones.. Los resultados son: se ha podido conocer que la aplicación del Programa Instruccional en Resolución de Problemas Aritméticos Elementales Verbales de una Sola Operación a un grupo de alumnos muestra resultados sensiblemente superiores en las puntuaciones finales, respecto a las iniciales en las diversas categorías semánticas de problemas.Y en el postest (segunda aplicación) en el grupo considerado en este estudio Comparación Pre-postest de los resultados en Problemas de Estructura Aditiva para el grupo entrenado. La probabilidad que se ofrece es para el estadístico 't de Student'.En los problemas de Combinación, los alumnos han mejorado significativamente en los dos problemas de Combinación 2, el planteado con números grandes y el enunciado con números pequeños (p0.022** y p0.020*) que es un problema muy difícil. El grupo también mejora significativamente en tres de los tipos de problemas de la categoría de Cambio (CA3, t.
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Resumen tomado de la revista
Resumo:
Resumen tomado de la publicación
Resumo:
Precede al tit.: Proyecto. Fecha tomada del código del documento
Resumo:
Resumen tomado de la publicación. IV número monográfico con el título: VII Seminario de Investigación y pensamiento numérico y algebraico (PNA).
Resumo:
Los datos que presentamos parecen apuntar hacia la existencia de una separación entre los dominios operatorios que se transportaban sobre el lenguaje y los que tienen una naturaleza fundamentalmente figurativa. Aquí, las tareas operatorias que se transportan sobre el lenguaje van muy por delante de las figurativas Todas las tareas en las que existe un componente figurativo importante son especialmente difíciles de realizar para los ciegos, presentando en todos los casos retrasos respecto a los controles videntes en su realización adecuada que oscilan entre los tres y seis años. Estos retrasos son debidos a la naturaleza sensorial con la que se realiza la tarea. Pero, aquellas tareas que tienen una naturaleza verbal, como es la clasificación aditiva, cuantificación de la inclusión, clasificación jerárquica no aparece ningún retraso de los ciegos respecto de los controles y estas tareas se resuelven en un momento evolutivo anterior a otras cuya realización debería de producirse al mismo tiempo o, incluso después. En definitiva, los resultados son evidentes, mientras los ciegos muestran rendimientos superiores a los videntes en palabras con referentes táctiles , no existen diferencias en los rendimientos que ambos grupos consiguen en las tareas que incluyan letras de alto contenido auditivo y visual. Lo que parece sugerir la existencia de una codificación semántica de la información que permite resolver adecuadamente tareas que de otro modo les sería difícil de realizar por otra parte este modo de codificar la información se da a partir del cuarto nivel de edad, entre los trece y catorce años. Los resultados expuestos ponen de manifiesto la relevancia teórica que la investigación psicológica con sujetos alejados de la norma puede llegar a tener. Pero, a la vez, somos conscientes de las limitaciones de este trabajo, ya que la muestra con la que hemos trabajado ha sido restringida y sus resultados no permiten una generalización y la investigación tiene que ser práctica. Nuestro objetivo no es presentar una serie de recetas para mejorar la educación de los niños ciegos. Pero, la colaboración entre investigadores, educadores, etcétera, solo puede procurar beneficios a la población con la que se trabaja y es obligación de los poderes públicos que esos contactos sean permanentes.
Resumo:
Discurso en la III Reunión del Consejo Directivo de la OEI en Toledo
Resumo:
Se desarrollan los siguientes temas sobre Teoría Física del Color: generalidades; fuentes de luz y distribución espectral de la radiación emitida por el cuerpo negro; flujo luminoso y magnitudes derivadas; flujo radiante y flujo luminoso, rendimiento luminoso de una radiación monocromática y de una radiación compleja; absorción por un medio, leyes, transmisión y densidad óptica, coeficiente molecular de extinción; luminosidad de una solución o de una superficie; características cromáticas de la luz; mezcla aditiva de colores, especificación de un color en función de tres primarios; especificación de un color según las normas de la Comisión Internacional de Iluminación, curva lugar del espectro; coeficientes cromáticos de una radiación compleja; determinación de los coeficientes cromáticos de una solución o superficie coloreada; algunas propiedades del diagrama cromático y caracterización de un color por su longitud de onda dominante y pureza.
Resumo:
Analizar la naturaleza y la evolución del razonamiento inductivo numérico en los escolares de Educación Primaria. Planteamiento de hipótesis.. Muestra 1: 297 sujetos de entre 9 y 12 años. Muestra 2: 400 sujetos de entre 6 y 12 años, todos ellos alumnos de Educación Primaria.. Primera etapa: construcción de un modelo teórico evolutivo sobre el razonamiento inductivo centrado en las series numéricas. En esta etapa se realiza un primer estudio teórico que plantea la necesidad de un modelo para estudiar el razonamiento inductivo numérico. En segundo lugar, se realiza un estudio exploratorio aplicado a la muestra 1 que confirma la viabilidad del modelo, lo orienta y permite establecer nuevas cuestiones. Finalmente, se establece el marco interpretativo y el desarrollo conceptual del modelo elaborado mediante un Análisis Didáctico del razonamiento inductivo numérico. La primera parte de esta etapa y los primeros resultados del estudio exploratorio se desarrollan en un trabajo previo (Ortiz, 1993). Segunda etapa: evaluación de la parte del modelo construido referente a Educación Primaria mediante un estudio empírico de carácter descriptivo orientado a obtener evidencias sobre la evolución de competencias inductivas y aritméticas en los escolares, y un estudio de casos para confirmar las características observadas.. Escala Acumulativa de Guttman, Escala Acumulativa de Mokken, Escala Inductiva Numérica, Análisis Didáctico.. Se observa que los escolares de menor edad utilizan esquemas como el aprendizaje memorístico de las series numéricas frente a los escolares de mayor edad que emplean esquemas prealgebraicos para la interpretación y utilización de regularidades aritméticas en series numéricas. Se constata el dominio y el uso predominante del modelo aditivo frente al multiplicativo por los escolares de Primaria. Se encuentran tres fases en razonamiento inductivo en Educación Primaria: una primera fase ordinal con estrategias inductivas basadas en la serie numérica base y en la acción de contar (6 años), una segunda fase aditiva con estrategias inductivas basadas en la adición y substracción (7-9 años) y una tercera fase multiplicativa con estrategias inductivas basadas en la multiplicación (10-12 años).. Se constata la importancia de la inducción en la construcción del número natural aunque se señala la inexistencia de un modelo teórico inductivo y se destaca la necesidad de tal modelo, sobre todo para el razonamiento inductivo numérico. Se plantean nuevas vías de investigación..
Resumo:
Resumen tomado parcialmente de la revista.- El artículo forma parte de un monográfico dedicado a Psicología de las Matemáticas