31 resultados para etching anisotropy

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The double sulfate family (ABSO4), where A and B are alkali metal cations, is the object of great interest owing to the complexity and richness of its sequence of phase transition induced by temperature variation. A new sulfate salt characterized by the presence of water molecule in the unit cell with the chemical formula, Li2Na3(SO4)2⋅6H2O (LSSW), was obtained. The ultrasonic velocity measurement was done with pulse echo overlap technique [PEO]. All the six second order elastic stiffness constants, C11 = C22, C33, C44 = C55, C12, C14 and C13 = C23 are reported for the first time. The anisotropy in the elastic properties of the crystal are well explained by the pictorial representation of the polar plots of phase velocity, slowness, Young’s modulus and linear compressibility in a–b and a–c planes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design and development of an evanescent wave sensor to determine the etching rate of the core of an optical fibre is discussed in this paper. The working of the device is based on the principle of propagation and loss of the evanescent wave in the cladding region of the fibre. The fraction of light intensity creeping out of the core of an uncladded fibre is a function of the core radius. As this radius decreases, the evanescent wave coupling to the medium surrounding the core enhances. This results in a decrease of the transmitted light intensity through the fibre. This technique is useful to design and fabricate optical fibres with different core geometries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ferrofluids belonging to the series NixFe1 xFe2O4 were synthesised by two different procedures—one by standard co-precipitation techniques, the other by co-precipitation for synthesis of particles and dispersion aided by high-energy ball milling with a view to understand the effect of strain and size anisotropy on the magneto-optical properties of ferrofluids. The birefringence measurements were carried out using a standard ellipsometer. The birefringence signal obtained for chemically synthesised samples was satisfactorily fitted to the standard second Langevin function. The ball-milled ferrofluids showed a deviation and their birefringence was enhanced by an order. This large enhancement in the birefringence value cannot be attributed to the increase in grain size of the samples, considering that the grain sizes of sample synthesised by both modes are comparable; instead, it can be attributed to the lattice strain-induced shape anisotropy(oblation) arising from the high-energy ball-milling process. Thus magnetic-optical (MO) signals can be tuned by ball-milling process, which can find potential applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline Fe–Ni thin films were prepared by partial crystallization of vapour deposited amorphous precursors. The microstructure was controlled by annealing the films at different temperatures. X-ray diffraction, transmission electron microscopy and energy dispersive x-ray spectroscopy investigations showed that the nanocrystalline phase was that of Fe–Ni. Grain growth was observed with an increase in the annealing temperature. X-ray photoelectron spectroscopy observations showed the presence of a native oxide layer on the surface of the films. Scanning tunnelling microscopy investigations support the biphasic nature of the nanocrystalline microstructure that consists of a crystalline phase along with an amorphous phase. Magnetic studies using a vibrating sample magnetometer show that coercivity has a strong dependence on grain size. This is attributed to the random magnetic anisotropy characteristic of the system. The observed coercivity dependence on the grain size is explained using a modified random anisotropy model

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ferrofluids belonging to the series NixFe1 xFe2O4 were synthesised by two different procedures—one by standard co-precipitation techniques, the other by co-precipitation for synthesis of particles and dispersion aided by high-energy ball milling with a view to understand the effect of strain and size anisotropy on the magneto-optical properties of ferrofluids. The birefringence measurements were carried out using a standard ellipsometer. The birefringence signal obtained for chemically synthesised samples was satisfactorily fitted to the standard second Langevin function. The ball-milled ferrofluids showed a deviation and their birefringence was enhanced by an order. This large enhancement in the birefringence value cannot be attributed to the increase in grain size of the samples, considering that the grain sizes of sample synthesised by both modes are comparable; instead, it can be attributed to the lattice strain-induced shape anisotropy(oblation) arising from the high-energy ball-milling process. Thus magnetic-optical (MO) signals can be tuned by ball-milling process, which can find potential applications

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural rubber/isora fibre composites were cured at various temperatures. The solvent swelling characteristics of natural rubber composites containing both untreated and alkali treated fibres were investigated in aromatic and aliphatic solvents like toluene, and n-hexane. The diffusion experiments were conducted by the sorption gravimetric method. The restrictions on elastomer swelling exerted by isora fibre as well as the anisotropy of swelling of the composite have been confirmed by this study. Composite cured at 100°C shows the lowest percentage swelling. The uptake of aromatic solvent is higher than that of aliphatic solvent for the composites cured at all temperatures. The effect of fibre loading on the swelling behaviour of the composite was also investigated in oils like petrol, diesel, lubricating oil etc. The % swelling index and swelling coefficient of the composite were found to decrease with increase in fibre loading. This is due to the increased hindrance exerted by the fibres at higher fibre loadings and also due to the good fibre-rubber interactions. Maximum uptake of solvent was observed with petrol followed by diesel and then lubricating oil. The presence of bonding agent in the composites restrict the swelling considerably due to the strong interfacial adhesion. At a fixed fibre loading, the alkali treated fibre composite showed lower percentage swelling compared to the untreated one.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tear and wear properties of short kevlar fiber, thermoplastic polcurethane (TPU) composite with respect to fiber loading-and fiber onentation has been studied and the fracture surfaces were examined under scanning electron microscope (SEM). Tear strength first decreased up to 20 phr fiber loading and then gradually increased with increasing fiber loading. Anisotropy in tear strength was evident beyond a fiber loading of 20 phr. Tear fracture surface of unfilled TPU showed sinusoidal folding characteristics of high strength matrix. At low fiber loading the tear failure was mainly due to fibermatrix failure whereas at higher fiber loading the failure occurred by fiber breakage. Abrasion loss shows a continuous rise with increasing fiber loading, the loss in the transverse orientation of fibers being higher than that in the longitudinal orientation. The abraded surface showed lone cracks and ridges parallel to the direction of abrasion indicating an abrasive wear mechanism. In the presence of fber the abrasion loss was mainly due to fiber low.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of carrying out this investigation is to develop suitable transducer array systems so that underwater pipeline inspection could be carried out in a much better way, a focused beam and electronic steering can reduce inspection time as well. Better results are obtained by optimizing the array parameters. The spacing between the elements is assumed to be half the wavelength so that the interelement interaction is minimum. For NDT applications these arrays are operated at MHz range. The wavelengths become very small in these frequency ranges. Then the size of the array elements becomes very small, requiring hybrid construction techniques for their fabrication. Transducer elements have been fabricated using PVDF as the active, mild steel as the backing and conducting silver preparation as the bonding materials. The transducer is operated in the (3,3) mode. The construction of a high frequency array is comparatively complicated. The interelement spacing between the transducer elements becomes considerably small when high frequencies are considered. It becomes very difficult to construct the transducer manually. The electrode connections to the elements can produce significant loading effect. The array has to be fabricated using hybrid construction techniques. The active materials has to be deposited on a proper substrate and etching techniques are required to fabricate the array. The annular ring, annular cylindrical or other similar structural forms of arrays may also find applications in the near future in treatments were curved contours of the human body are affected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrasonic is a good tool to investigate the elastic properties of crystals. It enables one to determine all the elastic constants, Poisson’s ratios, volume compressibility and bulk modulus of crystals from velocity measurements. It also enables one to demonstrate the anisotropy of elastic properties by plotting sections of the surfaces of phase velocity, slowness, group velocity, Young’s modulus and linear compressibility along the a-b, b-c and a-c planes. They also help one to understand more about phonon amplification and help to interpret various phenomena associated with ultrasonic wave propagation, thermal conductivity, phonon transport etc. Study of nonlinear optical crystals is very important from an application point of view. Hundreds of new NLO materials are synthesized to meet the requirements for various applications. Inorganic, organic and organometallic or semiorganic classes of compounds have been studied for several reasons. Semiorganic compounds have some advantages over their inorganic and inorganic counterparts with regard to their mechanical properties. High damage resistance, high melting point, good transparency and non-hygroscopy are some of the basic requirements for a material to be suitable for device fabrication. New NLO materials are being synthesized and investigation of the mechanical and elastic properties of these crystals is very important to test the suitability of these materials for technological applications

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoscale silica was synthesized by precipitation method using sodium silicate and dilute hydrochloric acid under controlled conditions. The synthesized silica was characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), BET adsorption and X-Ray Diffraction (XRD). The particle size of silica was calculated to be 13 nm from the XRD results and the surface area was found to be 295 m2/g by BET method. The performance of this synthesized nanosilica as a reinforcing filler in natural rubber (NR) compound was investigated. The commercial silica was used as the reference material. Nanosilica was found to be effective reinforcing filler in natural rubber compound. Filler-matrix interaction was better for nanosilica than the commercial silica. The synthesized nanosilica was used in place of conventional silica in HRH (hexamethylene tetramine, resorcinol and silica) bonding system for natural rubber and styrene butadiene rubber / Nylon 6 short fiber composites. The efficiency of HRH bonding system based on nanosilica was better. Nanosilica was also used as reinforcing filler in rubber / Nylon 6 short fiber hybrid composite. The cure, mechanical, ageing, thermal and dynamic mechanical properties of nanosilica / Nylon 6 short fiber / elastomeric hybrid composites were studied in detail. The matrices used were natural rubber (NR), nitrile rubber (NBR), styrene butadiene rubber (SBR) and chloroprene rubber (CR). Fiber loading was varied from 0 to 30 parts per hundred rubber (phr) and silica loading was varied from 0 to 9 phr. Hexa:Resorcinol:Silica (HRH) ratio was maintained as 2:2:1. HRH loading was adjusted to 16% of the fiber loading. Minimum torque, maximum torque and cure time increased with silica loading. Cure rate increased with fiber loading and decreased with silica content. The hybrid composites showed improved mechanical properties in the presence of nanosilica. Tensile strength showed a dip at 10 phr fiber loading in the case of NR and CR while it continuously increased with fiber loading in the case of NBR and SBR. The nanosilica improved the tensile strength, modulus and tear strength better than the conventional silica. Abrasion resistance and hardness were also better for the nanosilica composites. Resilience and compression set were adversely affected. Hybrid composites showed anisotropy in mechanical properties. Retention in ageing improved with fiber loading and was better for nanosilica-filled hybrid composites. The nanosilica also improved the thermal stability of the hybrid composite better than the commercial silica. All the composites underwent two-step thermal degradation. Kinetic studies showed that the degradation of all the elastomeric composites followed a first-order reaction. Dynamic mechanical analysis revealed that storage modulus (E’) and loss modulus (E”) increased with nanosiica content, fiber loading and frequency for all the composites, independent of the matrix. The highest rate of increase was registered for NBR rubber.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elastic properties of sodium doped Lithium potassium sulphate, LiK0.9Na0.1SO4, crystal has been studied by ultrasonic Pulse Echo Overlap [PEO] technique and are reported for the first time. The controversy regarding the type of crystal found while growth is performed at 35 °C with equimolar fraction of Li2SO4H2O, K2SO4 and Na2SO4 has been resolved by studying the elastic properties. The importance of this crystal is that it exhibits pyroelectric, ferroelectric and electro optic properties. It is simultaneously ferroelastic and superionic. The elastic properties of LiK0.9Na0.1SO4 crystal are well studied by measuring ultrasonic velocity in the crystal in certain specified crystallographic directions and evaluating the elastic stiffness constants, compliance constants and Poisson’s ratios. The anisotropy in the elastic properties of the crystal are well explained by the pictorial representation of the surface plots of phase velocity, slowness and linear compressibility in a-b and a-c planes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal transport properties, thermal diffusivity, thermal conductivity and specific heat capacity of Dicalcium Lead Propionate (DLP) crystal have been measured following a modified photopyroelectric thermal wave method. The measurements have been carried out with thermal waves propagating along the three principal symmetry directions, so as to bring out the anisotropy in these parameters. The variations of the above parameters through two prominent phase transition temperatures of this crystal have also been measured to understand the variation of these parameters as it undergoes ferroelectric phase transitions. In addition, complete thermal analysis and FTIR measurements have been done on the crystal to bring out the correlation of these results with the corresponding thermal transport properties. All these results are presented and discussed. The data presented in this paper form a comprehensive set of results on the thermal transport properties of this crystal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal transport properties—thermal diffusivity, thermal conductivity and specific heat capacity—of potassium selenate crystal have been measured through the successive phase transitions, following the photo-pyroelectric thermal wave technique. The variation of thermal conductivity with temperature through the incommensurate (IC) phase of this crystal is measured. The enhancement in thermal conductivity in the IC phase is explained in terms of heat conduction by phase modes, and the maxima in thermal conductivity during transitions is due to enhancement in the phonon mean free path and the corresponding reduction in phonon scattering. The anisotropy in thermal conductivity and its variation with temperature are reported. The variation of the specific heat with temperature through the high temperature structural transition at 745 K is measured, following the differential scanning calorimetric method. By combining the results of photo-pyroelectric thermal wave methods and differential scanning calorimetry, the variation of the specific heat capacity with temperature through all the four phases of K2SeO4 is reported. The results are discussed in terms of phonon mode softening during transitions and phonon scattering by phase modes in the IC phase.