10 resultados para Zirconium particles
em Cochin University of Science
Resumo:
The electron donating properties, surface acidity/ basicity and catalytic activity of cerium - zirconium mixed oxides at various compositions have been reported at an activation temperature of 500 degree C. The catalytic activity for the esterification of acetic acid with n-butanol has heen correlated with electron donating properties and surface acidity/basicity of the oxides.
Resumo:
We present a novel approach to computing the orientation moments and rheological properties of a dilute suspension of spheroids in a simple shear flow at arbitrary Peclct number based on a generalised Langevin equation method. This method differs from the diffusion equation method which is commonly used to model similar systems in that the actual equations of motion for the orientations of the individual particles are used in the computations, instead of a solution of the diffusion equation of the system. It also differs from the method of 'Brownian dynamics simulations' in that the equations used for the simulations are deterministic differential equations even in the presence of noise, and not stochastic differential equations as in Brownian dynamics simulations. One advantage of the present approach over the Fokker-Planck equation formalism is that it employs a common strategy that can be applied across a wide range of shear and diffusion parameters. Also, since deterministic differential equations are easier to simulate than stochastic differential equations, the Langevin equation method presented in this work is more efficient and less computationally intensive than Brownian dynamics simulations.We derive the Langevin equations governing the orientations of the particles in the suspension and evolve a procedure for obtaining the equation of motion for any orientation moment. A computational technique is described for simulating the orientation moments dynamically from a set of time-averaged Langevin equations, which can be used to obtain the moments when the governing equations are harder to solve analytically. The results obtained using this method are in good agreement with those available in the literature.The above computational method is also used to investigate the effect of rotational Brownian motion on the rheology of the suspension under the action of an external force field. The force field is assumed to be either constant or periodic. In the case of con- I stant external fields earlier results in the literature are reproduced, while for the case of periodic forcing certain parametric regimes corresponding to weak Brownian diffusion are identified where the rheological parameters evolve chaotically and settle onto a low dimensional attractor. The response of the system to variations in the magnitude and orientation of the force field and strength of diffusion is also analyzed through numerical experiments. It is also demonstrated that the aperiodic behaviour exhibited by the system could not have been picked up by the diffusion equation approach as presently used in the literature.The main contributions of this work include the preparation of the basic framework for applying the Langevin method to standard flow problems, quantification of rotary Brownian effects by using the new method, the paired-moment scheme for computing the moments and its use in solving an otherwise intractable problem especially in the limit of small Brownian motion where the problem becomes singular, and a demonstration of how systems governed by a Fokker-Planck equation can be explored for possible chaotic behaviour.
Resumo:
Nano structured noble metals have very important applications in diverse fields as photovoltaics, catalysis, electronic and magnetic devices, etc. Here, we report the application of dual beam thermal lens technique for the determination of the effect of silver sol on the absolute fluorescence quantum yield (FQY) of the laser dye rhodamine 6G. A 532 nm radiation from a diode pumped solid state laser was used as the excitation source. It has been observed that the presence of silver sol decreases the fluorescence quantum efficiency. This is expected to have a very important consequence in enhancing Raman scattering which is an important spectrochemical tool that provides information on molecular structures. We have also observed that the presence of silver sol can enhance the thermal lens signal which makes the detection of the signal easier at any concentration.
Resumo:
The thesis presented here unveils an experimental study of the hydrodynamic characteristics of swirling fluidized bed viz. pressure drop across the distributor and the bed, minimum fluidizing velocity, bed behaviour and angle of air injection. In swirling fluidized bed the air is admitted to the bed at an angle 'Ѳ' to the horizontal. The vertical component of the velocity v sin Ѳ causes fluidization and the horizontal component v cos Ѳ contributes to swirl motion of the bed material.The study was conducted using spherical particles having sizes 3.2 mm, 5.5 mm & 7.4 mm as the bed materials. Each of these particles was made from high density polyethylene, nylon and acetal having relative densities of 0.93, 1.05 and 1.47 respectively.The experiments were conducted using conidour type distributors having four rows of slits. Altogether four distributors having angles of air injection (Φ)- 0°, 5°, 10° & 15° were designed and fabricated for the study. The total number of slits in each distributor was 144. The area of opening was 6220 mm2 making the percentage area of opening to 9.17. But the percentage useful area of opening of the distributor was 96.The experiments on the variation of distributor pressure drop with superficial velocity revealed that the distributor pressure drop decreases with angle of air injection. Investigations related to bed hydrodynamics were conducted using 2.5 kg of bed material. The bed pressure drop measurements were made along the radial direction of the distributor at distances of 60 mm, 90 mm, 120 mm & 150 mm from the centre of the distributor. It was noticed that after attaining minimum fluidizing velocity, the bed pressure drop increases along the radial direction of the distributor. But at a radial distance of 90 mm from the distributor centre, after attaining minimum fluidizing velocity the bed pressure drop remains almost constant. It was also observed that the bed pressure drop varies inversely with particle size as well as particle density.An attempt was made to determine the effect of various parameters on minimum fluidizing velocity. It was noticed that the minimum fluidizing velocity varies directly with angle of air injection (Φ), particle size and particle density.The study on the bed behaviour showed that the superficial velocity required for initiating various bed phenomena (such as swirl motion and separation of particles from the cone at the centre) increase with increase in particle size as well as particle density. It was also observed that the particle size and particle density directly influence the superficial velocity required for various regimes of bed behaviour such as linear variation of bed pressure drop, constant bed pressure drop and sudden increase or decrease in bed pressure drop.Experiments were also performed to study the effect of angle of air injection (Φ). It was noticed that the bed pressure drop decreases with angle of air injection. It was also noticed that the angle of air injection directly influence the superficial velocity required for initiating various bed phenomena as well as the various regimes of bed behaviour.
Resumo:
Catalysis research underpins the science of modern chemical processing and fuel technologies. Catalysis is commercially one of the most important technologies in national economies. Solid state heterogeneous catalyst materials such as metal oxides and metal particles on ceramic oxide substrates are most common. They are typically used with commodity gases and liquid reactants. Selective oxidation catalysts of hydrocarbon feedstocks is the dominant process of converting them to key industrial chemicals, polymers and energy sources.[1] In the absence of a unique successfiil theory of heterogeneous catalysis, attempts are being made to correlate catalytic activity with some specific properties of the solid surface. Such correlations help to narrow down the search for a good catalyst for a given reaction. The heterogeneous catalytic performance of material depends on many factors such as [2] Crystal and surface structure of the catalyst. Thermodynamic stability of the catalyst and the reactant. Acid- base properties of the solid surface. Surface defect properties of the catalyst.Electronic and semiconducting properties and the band structure. Co-existence of dilferent types of ions or structures. Adsorption sites and adsorbed species such as oxygen.Preparation method of catalyst , surface area and nature of heat treatment. Molecular structure of the reactants. Many systematic investigations have been performed to correlate catalytic performances with the above mentioned properties. Many of these investigations remain isolated and further research is needed to bridge the gap in the present knowledge of the field.
Resumo:
Shrimp grow out systems under zero water exchange mode demand constant remediation of total ammonia nitrogen (TAN) andNO2 −–Nto protect the crop. To address this issue, aninexpensive and user-friendly technology using immobilized nitrifying bacterial consortia (NBC) as bioaugmentors has been developed and proposed for adoption in shrimp culture systems. Indigenous NBC stored at 4 °C were activated at room temperature (28 °C) and cultured in a 2 L bench top fermentor. The consortia, after enumeration by epifluorescence microscopy,were immobilized on delignifiedwood particles of a soft wood tree Ailantus altissima (300–1500 μm) having a surface area of 1.87m2 g−1. Selection of wood particle as substratumwas based on adsorption of NBC on to the particles, biofilm formation, and their subsequent nitrification potential. The immobilization could be achievedwithin 72 h with an initial cell density of 1×105 cells mL−1. On experimenting with the lowest dosage of 0.2 g (wet weight) immobilized NBC in 20 L seawater, a TAN removal rate of 2.4 mg L−1 within three days was observed. An NBC immobilization device could be developed for on site generation of the bioaugmentor preparation as per requirement. The product of immobilization never exhibited lag phase when transferred to fresh medium. The extent of nitrification in a simulated systemwas two times the rate observed in the control systems suggesting the efficacy in real life situations. The products of nitrification in all experiments were undetectable due to denitrifying potency, whichmade the NBC an ideal option for biological nitrogen removal. The immobilized NBC thus generated has been named TANOX (Total Ammonia Nitrogen Oxidizer)
Resumo:
Fine particles of lithium ferrite were synthesized by the sol-gel method. By subsequent heat treatment at different temperatures, lithium ferrites of different grain sizes were prepared. A structural characterization of all the samples was conducted by the x-ray diffraction technique. A grain size of around 12 nm was observed for Li0.5Fe2.5O4 obtained through the sol-gel method. Magnetic properties of lithium ferrite nanoparticles with grain size ranging from 12 to 32 nm were studied. Magnetization measurements showed that Li0.5Fe2.5O4 fine particles exhibit a deviation from the predicted magnetic behaviour. The as-prepared sample of lithium ferrite showed a maximum saturation magnetization of 75 emu g−1. Variation of coercivity is attributed to the transition from multi-domain to single domain nature. Dielectric permittivity and ac conductivity of all the samples were evaluated as a function of frequency, temperature and grain size. Variation of permittivity and ac conductivity with frequency reveals that the dispersion is due to the Maxwell–Wagner type interfacial polarization
Resumo:
Transition metal acetylides, MC2 (M=Fe, Co and Ni), exhibit ferromagnetic behavior of which TC is characteristic of their size and structure. CoC2 synthesized in anhydrous condition exhibited cubic structure with disordered C2− 2 orientation. Once being exposed to water (or air), the particles behave ferromagnetically due to the lengthening of the Co–Co distance by the coordination of water molecules to Co2+ cations. Heating of these particles induces segregation of metallic cores with carbon mantles. Electron beam or 193 nm laser beam can produce nanoparticles with metallic cores covered with carbon mantles