11 resultados para Zirconium particles
em CaltechTHESIS
Resumo:
Many particles proposed by theories, such as GUT monopoles, nuclearites and 1/5 charge superstring particles, can be categorized as Slow-moving, Ionizing, Massive Particles (SIMPs).
Detailed calculations of the signal-to-noise ratios in vanous acoustic and mechanical methods for detecting such SIMPs are presented. It is shown that the previous belief that such methods are intrinsically prohibited by the thermal noise is incorrect, and that ways to solve the thermal noise problem are already within the reach of today's technology. In fact, many running and finished gravitational wave detection ( GWD) experiments are already sensitive to certain SIMPs. As an example, a published GWD result is used to obtain a flux limit for nuclearites.
The result of a search using a scintillator array on Earth's surface is reported. A flux limit of 4.7 x 10^(-12) cm^(-2)sr^(-1)s^(-1) (90% c.l.) is set for any SIMP with 2.7 x 10^(-4) less than β less than 5 x 10^(-3) and ionization greater than 1/3 of minimum ionizing muons. Although this limit is above the limits from underground experiments for typical supermassive particles (10^(16)GeV), it is a new limit in certain β and ionization regions for less massive ones (~10^9 GeV) not able to penetrate deep underground, and implies a stringent limit on the fraction of the dark matter that can be composed of massive electrically and/ or magnetically charged particles.
The prospect of the future SIMP search in the MACRO detector is discussed. The special problem of SIMP trigger is examined and a circuit proposed, which may solve most of the problems of the previous ones proposed or used by others and may even enable MACRO to detect certain SIMP species with β as low as the orbital velocity around the earth.
Resumo:
The reactivity of permethylzirconocene and permethylhafnocene complexes with various nucleophiles has been investigated. Permethylzirconocene reacts with sterically hindered ketenes and allenes to afford metallacycle products. Reaction of these cummulenes with permethylzirconocene hydride complexes affords enolate and σ-allyl species, respectively. Reactions which afford enolate products are nonstereospecific, whereas reactions which afford allyl products initially give a cis-σ-allyl complex which rearranges to its trans isomer. The mechanism of these reactions is proposed to occur either by a Lewis Acid-Lewis Base interaction (ketenes) or by formation of a π-olefin intermediate (allenes).
Permethylzirconocene haloacyl complexes react with strong bases such as lithium diisopropylamide or methylene trimethylphosphorane to afford ketene compounds. Depending on the size of the alkyl ketene substituent, the hydrogenation of these compounds affords enolate-hydride products with varying degrees of stereoselectivity. The larger the substituent, the greater is the selectivity for cis hydrogenation products.
The reaction of permethylzirconocene dihydride and permethylhafnocene dihydride with methylene trimethylphosphorane affords methyl-hydride and dimethyl derivatives. Under appropriate conditions, the metallated-ylide complex 1, (η^5-C_5(CH_3)_5)_2 Zr(H)CH_2PMe_2CH_2, is also obtained and has been structurally characterized by X-ray diffraction techniques. Reaction of 1 with CO affords (η^5-C_5(CH_3)_5)_2 Zr(C,O-η^2 -(PMe_3)HC=CO)H which exists in solution as an equilibrium mixture of isomers. In one isomer (2), the η^2-acyl oxygen atom occupies a lateral equatorial coordination position about zirconium, whereas in the other isomer (3), the η-acyl oxygen atom occupies the central equatorial position. The equilibrium kinetics of the 2→3 isomerization have been studied and the structures of both complexes confirmed by X-ray diffraction methods. These studies suggest a mechanism for CO insertion into metal-carbon bonds of the early transition metals.
Permethylhafnocene dihydride and permethylzirconocene hydride complexes react with diazoalkanes to afford η^2-N, N' -hydrazonido species in which the terminal nitrogen atom of the diazoalkane molecule has inserted into a metal-hydride or metal-carbon bond. The structure of one of these compounds, Cp*_2Zr(NMeNCTol_2)OH, has been determined by X-ray diffraction techniques. Under appropriate conditions, the hydrazonido-hydride complexes react with a second equivalent of diazoalkene to afford η' -N-hydrazonido-η^2-N, N' -hydrazonido species.
Resumo:
Part I
Particles are a key feature of planetary atmospheres. On Earth they represent the greatest source of uncertainty in the global energy budget. This uncertainty can be addressed by making more measurement, by improving the theoretical analysis of measurements, and by better modeling basic particle nucleation and initial particle growth within an atmosphere. This work will focus on the latter two methods of improvement.
Uncertainty in measurements is largely due to particle charging. Accurate descriptions of particle charging are challenging because one deals with particles in a gas as opposed to a vacuum, so different length scales come into play. Previous studies have considered the effects of transition between the continuum and kinetic regime and the effects of two and three body interactions within the kinetic regime. These studies, however, use questionable assumptions about the charging process which resulted in skewed observations, and bias in the proposed dynamics of aerosol particles. These assumptions affect both the ions and particles in the system. Ions are assumed to be point monopoles that have a single characteristic speed rather than follow a distribution. Particles are assumed to be perfect conductors that have up to five elementary charges on them. The effects of three body interaction, ion-molecule-particle, are also overestimated. By revising this theory so that the basic physical attributes of both ions and particles and their interactions are better represented, we are able to make more accurate predictions of particle charging in both the kinetic and continuum regimes.
The same revised theory that was used above to model ion charging can also be applied to the flux of neutral vapor phase molecules to a particle or initial cluster. Using these results we can model the vapor flux to a neutral or charged particle due to diffusion and electromagnetic interactions. In many classical theories currently applied to these models, the finite size of the molecule and the electromagnetic interaction between the molecule and particle, especially for the neutral particle case, are completely ignored, or, as is often the case for a permanent dipole vapor species, strongly underestimated. Comparing our model to these classical models we determine an “enhancement factor” to characterize how important the addition of these physical parameters and processes is to the understanding of particle nucleation and growth.
Part II
Whispering gallery mode (WGM) optical biosensors are capable of extraordinarily sensitive specific and non-specific detection of species suspended in a gas or fluid. Recent experimental results suggest that these devices may attain single-molecule sensitivity to protein solutions in the form of stepwise shifts in their resonance wavelength, \lambda_{R}, but present sensor models predict much smaller steps than were reported. This study examines the physical interaction between a WGM sensor and a molecule adsorbed to its surface, exploring assumptions made in previous efforts to model WGM sensor behavior, and describing computational schemes that model the experiments for which single protein sensitivity was reported. The resulting model is used to simulate sensor performance, within constraints imposed by the limited material property data. On this basis, we conclude that nonlinear optical effects would be needed to attain the reported sensitivity, and that, in the experiments for which extreme sensitivity was reported, a bound protein experiences optical energy fluxes too high for such effects to be ignored.
Resumo:
A series of Cs- and C1-symmetric doubly-linked ansa-metallocenes of the general formula {1,1'-SiMe2-2,2'-E-('ƞ5-C5H2-4-R1)-(ƞ5-C5H-3',5'-(CHMe2)2)}ZrC2 (E = SiMe2 (1), SiPh2 (2), SiMe2 -SiMe2 (3); R1 = H, CHMe2, C5H9, C6H11, C6H5) has been prepared. When activated by methylaluminoxane, these are active propylene polymerization catalysts. 1 and 2 produce syndiotactic polypropylenes, and 3 produces isotactic polypropylenes. Site epimerization is the major pathway for stereoerror formation for 1 and 2. In addition, the polymer chain has slightly stronger steric interaction with the diphenylsilylene linker than with the dimethylsilylene linker. This results in more frequent site epimerization and reduced syndiospecificity for 2 compared to 1.
C1-Symmetric ansa-zirconocenes [1,1 '-SiMe2-(C5H4)-(3-R-C5H3)]ZrCl2 (4), [1,1 '-SiMe2-(C5H4)-(2,4-R2-C5H2)]ZrCl2 (5) and [1,1 '-SiMe2-2,2 '-(SiMe2-SiMe2)-(C5H3)-( 4-R-C5H2)]ZrCl2 (6) have been prepared to probe the origin of isospecificity in 3. While 4 and 3 produce polymers with similar isospecificity, 5 and 6 give mostly hemi-isotactic-like polymers. It is proposed that the facile site epimerization via an associative pathway allows rapid equilibration of the polymer chain between the isospecific and aspecific insertion sites. This results in more frequent insertion from the isospecific site, which has a lower kinetic barrier for chain propagation. On the other hand, site epimerization for 5 and 6 is slow. This leads to mostly alternating insertion from the isospecific and aspecific sites, and consequently, a hemi-isotactic-like polymers. In comparison, site epimerization is even slower for 3, but enchainment from the aspecific site has an extremely high kinetic barrier for monomer coordination. Therefore, enchainment occurs preferentially from the isospecific site to produce isotactic polymers.
A series of cationic complexes [(ArN=CR-CR=NAr)PtMe(L)]+[BF4]+ (Ar = aryl; R = H, CH3; L = water, trifluoroethanol) has been prepared. They react smoothly with benzene at approximately room temperature in trifluoroethanol solvent to yield methane and the corresponding phenyl Pt(II) cations, via Pt(IV)-methyl-phenyl-hydride intermediates. The reaction products of methyl-substituted benzenes suggest an inherent reactivity preference for aromatic over benzylic C-H bond activation, which can however be overridden by steric effects. For the reaction of benzene with cationic Pt(II) complexes, in which the diimine ligands bear 3,5-disubstituted aryl groups at the nitrogen atoms, the rate-determining step is C-H bond activation. For the more sterically crowded analogs with 2,6-dimethyl-substituted aryl groups, benzene coordination becomes rate-determining. The more electron-rich the ligand, as reflected by the CO stretching frequency in the IR spectrum of the corresponding cationic carbonyl complex, the faster the rate of C-H bond activation. This finding, however, does not reflect the actual C-H bond activation process, but rather reflects only the relative ease of solvent molecules displacing water molecules to initiate the reaction. That is, the change in rates is mostly due to a ground state effect. Several lines of evidence suggest that associative substitution pathways operate to get the hydrocarbon substrate into, and out of, the coordination sphere; i.e., that benzene substitution proceeds by a solvent- (TFE-) assisted associative pathway.
Resumo:
An electrostatic mechanism for the flocculation of charged particles by polyelectrolytes of opposite charge is proposed. The difference between this and previous electrostatic coagulation mechanisms is the formation of charged polyion patches on the oppositely charged surfaces. The size of a patch is primarily a function of polymer molecular weight and the total patch area is a function of the amount of polymer adsorbed. The theoretical predictions of the model agree with the experimental dependence of the polymer dose required for flocculation on polymer molecular weight and solution ionic strength.
A theoretical analysis based on the Derjaguin-Landau, Verwey- Overbeek electrical double layer theory and statistical mechanical treatments of adsorbed polymer configurations indicates that flocculation of charged particles in aqueous solutions by polyelectrolytes of opposite charge does not occur by the commonly accepted polymerbridge mechanism.
A series of 1, 2-dimethyl-5 -vinylpyridinium bromide polymers with a molecular weight range of 6x10^3 to 5x10^6 was synthesized and used to flocculate dilute polystyrene latex and silica suspensions in solutions of various ionic strengths. It was found that with high molecular weight polymers and/or high ionic strengths the polymer dose required for flocculation is independent of molecular weight. With low molecular weights and/or low ionic strengths, the flocculation dose decreases with increasing molecular weight.
Resumo:
The Low Energy Telescopes on the Voyager spacecraft are used to measure the elemental composition (2 ≤ Z ≤ 28) and energy spectra (5 to 15 MeV /nucleon) of solar energetic particles (SEPs) in seven large flare events. Four flare events are selected which have SEP abundance ratios approximately independent of energy/nucleon. The abundances for these events are compared from flare to flare and are compared to solar abundances from other sources: spectroscopy of the photosphere and corona, and solar wind measurements.
The selected SEP composition results may be described by an average composition plus a systematic flare-to-flare deviation about the average. For each of the four events, the ratios of the SEP abundances to the four-flare average SEP abundances are approximately monotonic functions of nuclear charge Z in the range 6 ≤ Z ≤ 28. An exception to this Z-dependent trend occurs for He, whose abundance relative to Si is nearly the same in all four events.
The four-flare average SEP composition is significantly different from the solar composition determined by photospheric spectroscopy: The elements C, N and O are depleted in SEPs by a factor of about five relative to the elements Na, Mg, Al, Si, Ca, Cr, Fe and Ni. For some elemental abundance ratios (e.g. Mg/O), the difference between SEP and photospheric results is persistent from flare to flare and is apparently not due to a systematic difference in SEP energy/nucleon spectra between the elements, nor to propagation effects which would result in a time-dependent abundance ratio in individual flare events.
The four-flare average SEP composition is in agreement with solar wind abundance results and with a number of recent coronal abundance measurements. The evidence for a common depletion of oxygen in SEPs, the corona and the solar wind relative to the photosphere suggests that the SEPs originate in the corona and that both the SEPs and solar wind sample a coronal composition which is significantly and persistently different from that of the photosphere.
Resumo:
We report measurements of isotope abundance ratios for 5-50 MeV/nuc nuclei from a large solar flare that occurred on September 23, 1978. The measurements were made by the Heavy Isotope Spectrometer Telescope (HIST) on the ISEE-3 satellite orbiting the Sun near an Earth-Sun libration point approximately one million miles sunward of the Earth. We report finite values for the isotope abundance ratios 13C/12C, 15N/14N, 18O/16O, 22Ne/ 20Ne, 25Mg/24Mg, and 26Mg/24Mg, and upper limits for the isotope abundance ratios 3He/4He, 14C/12C, 17O/16O, and 21Ne/20Ne.
We measured element abundances and spectra to compare the September 23, 1978 flare with other flares reported in the literature. The flare is a typical large flare with "low" Fe/O abundance (≤ 0.1).
For 13C/12C, 15N/14N, 18O/16O, 25Mg/ 24Mg, and 26Mg/24Mg, our measured isotope abundance ratios agree with the solar system abundance ratios of Cameron (1981). For neon we measure 22Ne/20Ne = 0.109 + 0.026 - 0.019, a value that is different with confidence 97.5% from the abundance measured in the solar wind by Geiss at al. (1972) of 22Ne/20Ne = 0.073 ± 0.001. Our measurement for 22Ne/20Ne agrees with the isotopic composition of the meteoritic component neon-A.
Separate arguments appear to rule out simple mass fractionation in the solar wind and in our solar energetic particle measurements as the cause of the discrepancy in the comparison of the apparent compositions of these two sources of solar material.
Resumo:
The access of 1.2-40 MeV protons and 0.4-1.0 MeV electrons from interplanetary space to the polar cap regions has been investigated with an experiment on board a low altitude, polar orbiting satellite (OG0-4).
A total of 333 quiet time observations of the electron polar cap boundary give a mapping of the boundary between open and closed geomagnetic field lines which is an order of magnitude more comprehensive than previously available.
Persistent features (north/south asymmetries) in the polar cap proton flux, which are established as normal during solar proton events, are shown to be associated with different flux levels on open geomagnetic field lines than on closed field lines. The pole in which these persistent features are observed is strongly correlated to the sector structure of the interplanetary magnetic field and uncorrelated to the north/south component of this field. The features were observed in the north (south) pole during a negative (positive) sector 91% of the time, while the solar field had a southward component only 54% of the time. In addition, changes in the north/south component have no observable effect on the persistent features.
Observations of events associated with co-rotating regions of enhanced proton flux in interplanetary space are used to establish the characteristics of the 1.2 - 40 MeV proton access windows: the access window for low polar latitudes is near the earth, that for one high polar latitude region is ~250 R⊕ behind the earth, while that for the other high polar latitude region is ~1750 R⊕ behind the earth. All of the access windows are of approximately the same extent (~120 R⊕). The following phenomena contribute to persistent polar cap features: limited interplanetary regions of enhanced flux propagating past the earth, radial gradients in the interplanetary flux, and anisotropies in the interplanetary flux.
These results are compared to the particle access predictions of the distant geomagnetic tail configurations proposed by Michel and Dessler, Dungey, and Frank. The data are consistent with neither the model of Michel and Dessler nor that of Dungey. The model of Frank can yield a consistent access window configuration provided the following constraints are satisfied: the merging rate for open field lines at one polar neutral point must be ~5 times that at the other polar neutral point, related to the solar magnetic field configuration in a consistent fashion, the migration time for open field lines to move across the polar cap region must be the same in both poles, and the open field line merging rate at one of the polar neutral points must be at least as large as that required for almost all the open field lines to have merged in 0 (one hour). The possibility of satisfying these constraints is investigated in some detail.
The role played by interplanetary anisotropies in the observation of persistent polar cap features is discussed. Special emphasis is given to the problem of non-adiabatic particle entry through regions where the magnetic field is changing direction. The degree to which such particle entry can be assumed to be nearly adiabatic is related to the particle rigidity, the angle through which the field turns, and the rate at which the field changes direction; this relationship is established for the case of polar cap observations.
Resumo:
The problem of the continuation to complex values of the angular momentum of the partial wave amplitude is examined for the simplest production process, that of two particles → three particles. The presence of so-called "anomalous singularities" complicates the procedure followed relative to that used for quasi two-body scattering amplitudes. The anomalous singularities are shown to lead to exchange degenerate amplitudes with possible poles in much the same way as "normal" singularities lead to the usual signatured amplitudes. The resulting exchange-degenerate trajectories would also be expected to occur in two-body amplitudes.
The representation of the production amplitude in terms of the singularities of the partial wave amplitude is then developed and applied to the high energy region, with attention being paid to the emergence of "double Regge" terms. Certain new results are obtained for the behavior of the amplitude at zero momentum transfer, and some predictions of polarization and minima in momentum transfer distributions are made. A calculation of the polarization of the ρo meson in the reaction π - p → π - ρop at high energy with small momentum transfer to the proton is compared with data taken at 25 Gev by W. D. Walker and collaborators. The result is favorable, although limited by the statistics of the available data.
Resumo:
An array of two spark chambers and six trays of plastic scintillation counters was used to search for unaccompanied fractionally charged particles in cosmic rays near sea level. No acceptable events were found with energy losses by ionization between 0.04 and 0.7 that of unit-charged minimum-ionizing particles. New 90%-confidence upper limits were thereby established for the fluxes of fractionally charged particles in cosmic rays, namely, (1.04 ± 0.07)x10-10 and (2.03 ± 0.16)x10-10 cm-2sr-1sec-1 for minimum-ionizing particles with charges 1/3 and 2/3, respectively.
In order to be certain that the spark chambers could have functioned for the low levels of ionization expected from particles with small fractional charges, tests were conducted to estimate the efficiency of the chambers as they had been used in this experiment. These tests showed that the spark-chamber system with the track-selection criteria used might have been over 99% efficient for the entire range of energy losses considered.
Lower limits were then obtained for the mass of a quark by considering the above flux limits and a particular model for the production of quarks in cosmic rays. In this model, which is one involving the multi-peripheral Regge hypothesis, the production cross section and a corresponding mass limit are critically dependent on the Regge trajectory assigned to a quark. If quarks are "elementary'' with a flat trajectory, the mass of a quark can be expected to be at least 6 ± 2 BeV/c2. If quarks have a trajectory with unit slope, just as the existing hadrons do, the mass of a quark might be as small as 1.3 ± 0.2 BeV/c2. For a trajectory with unit slope and a mass larger than a couple of BeV/c2, the production cross section may be so low that quarks might never be observed in nature.
Resumo:
The behavior of spheres in non-steady translational flow has been studied experimentally for values of Reynolds number from 0.2 to 3000. The aim of the work was to improve our qualitative understanding of particle transport in turbulent gaseous media, a process of extreme importance in power plants and energy transfer mechanisms.
Particles, subjected to sinusoidal oscillations parallel to the direction of steady translation, were found to have changes in average drag coefficient depending upon their translational Reynolds number, the density ratio, and the dimensionless frequency and amplitude of the oscillations. When the Reynolds number based on sphere diameter was less than 200, the oscillation had negligible effect on the average particle drag.
For Reynolds numbers exceeding 300, the coefficient of the mean drag was increased significantly in a particular frequency range. For example, at a Reynolds number of 3000, a 25 per cent increase in drag coefficient can be produced with an amplitude of oscillation of only 2 per cent of the sphere diameter, providing the frequency is near the frequency at which vortices would be shed in a steady flow at the mean speed. Flow visualization shows that over a wide range of frequencies, the vortex shedding frequency locks in to the oscillation frequency. Maximum effect at the natural frequency and lock-in show that a non-linear interaction between wake vortex shedding and the oscillation is responsible for the increase in drag.