63 resultados para Transparent ceramics
em Cochin University of Science
Resumo:
Materials exhibiting transparency and electrical conductivity simultaneously, transparent conductors, Transparent conducting oxides (TCOs), which have high transparency through the visible spectrum and high electrical conductivity are already being used in numerous applications. Low-emission windows that allow visible light through while reflecting the infrared, this keeps the heat out in summer, or the heat in, in winter. A thin conducting layer on or in between the glass panes achieves this. Low-emission windows use mostly F-doped SnO2. Most of these TCO’s are n type semiconductors and are utilized in a variety of commercial applications, such as flat-panel displays, photovoltaic devices, and electrochromic windows, in which they serve as transparent electrodes. Novel functions may be integrated into the materials since oxides have a variety of elements and crystal structures, providing great potential for realizing a diverse range of active functions. However, the application of TCOs has been restricted to transparent electrodes, notwithstanding the fact that TCOs are n-type semiconductors. The primary reason is the lack of p-type TCOs, because many of the active functions in semiconductors originate from the nature of the pn-junction. In 1997, H. Kawazoe et al.[2] reported CuAlO2 thin films as a first p-type TCO along with a chemical design concept for the exploration of other p-type TCOs.
Resumo:
There is an increasing demand for renewable energies due to the limited availability of fossil and nuclear fuels and due to growing environmental problems. Photovoltaic (PV) energy conversion has the potential to contribute significantly to the electrical energy generation in the future. Currently, the cost for photovoltaic systems is one of the main obstacles preventing production and application on a large scale. The photovoltaic research is now focused on the development of materials that will allow mass production without compromising on the conversion efficiencies. Among important selection criteria of PV material and in particular for thin films, are a suitable band gap, high absorption coefficient and reproducible deposition processes capable of large-volume and low cost production. The chalcopyrite semiconductor thin films such as Copper indium selenide and Copper indium sulphide are the materials that are being intensively investigated for lowering the cost of solar cells. Conversion efficiencies of 19 % have been reported for laboratory scale solar cell based on CuInSe2 and its alloys. The main objective of this thesis work is to optimise the growth conditions of materials suitable for the fabrication of solar cell, employing cost effective techniques. A typical heterojunction thin film solar cell consists of an absorber layer, buffer layer and transparent conducting contacts. The most appropriate techniques have been used for depositing these different layers, viz; chemical bath deposition for the window layer, flash evaporation and two-stage process for the absorber layer, and RF magnetron sputtering for the transparent conducting layer. Low cost experimental setups were fabricated for selenisation and sulphurisation experiments, and the magnetron gun for the RF sputtering was indigenously fabricated. The films thus grown were characterised using different tools. A powder X-ray diffractometer was used to analyse the crystalline nature of the films. The energy dispersive X-ray analysis (EDX) and scanning electron microscopy i (SEM) were used for evaluating the composition and morphology of the films. Optical properties were investigated using the UV-Vis-NIR spectrophotometer by recording the transmission/absorption spectra. The electrical properties were studied using the two probe and four probe electrical measurements. Nature of conductivity of the films was determined by thermoprobe and thermopower measurements. The deposition conditions and the process parameters were optimised based on these characterisations.
Resumo:
Transparent diode heterojunction on ITO coated glass substrates was fabricated using p-type AgCoO2 and n-type ZnO films by pulsed laser deposition (PLD). The PLD of AgCoO2 thin films was carried out using the pelletized sintered target of AgCoO2 powder, which was synthesized in-house by the hydrothermal process. The band gap of these thin films was found to be ~3.89 eV and they had transmission of~55% in the visible spectral region. Although Hall measurements could only indicate mixed carrier type conduction but thermoelectric power measurements of Seebeck coefficient confirmed the p-type conductivity of the grown AgCoO2 films. The PLD grown ZnO films showed a band gap of ~3.28 eV, an average optical transmission of ~85% and n-type carrier density of~4.6×1019 cm− 3. The junction between p-AgCoO2 and n-ZnO was found to be rectifying. The ratio of forward current to the reverse current was about 7 at 1.5 V. The diode ideality factor was much greater than 2.
Resumo:
Highly conductive and transparent thin films of amorphous zinc indium tin oxide are prepared at room temperature by co-sputtering of zinc 10 oxide and indium tin oxide. Cationic contents in the films are varied by adjusting the power to the sputtering targets. Optical transmission study of 11 films showed an average transmission greater than 85% across the visible region. Maximum conductivity of 6×102 S cm−1 is obtained for Zn/In/ 12 Sn atomic ratio 0.4/0.4/0.2 in the film. Hall mobility strongly depends on carrier concentration and maximum mobility obtained is 18 cm2 V−1 s−1 13 at a carrier concentration of 2.1×1020 cm−3. Optical band gap of films varied from 3.44 eV to 3 eV with the increase of zinc content in the film 14 while the refractive index of the films at 600 nm is about 2.0.
Resumo:
The present work is an attempt to probe the elastic properties in some dielectric ceramics, by using ultrasonic pulse echo overlap technique. The base Ba6-xSm8+2xTi18O54 and Ca5Nb2TiO12 are very important dielectrics ceramics used for microwave communication as well as for substrate materials. Ultrasonic is one of the most widely used and powerful techniques to measure elastic properties of solids. The ultrasonic technique is nondestructive in nature and the measurements are relatively straightforward to perform. One unique advantantage of the ultrasonic technique is that both static and dynamic properties can be measured simultaneously. The velocity and attenuation coefficients of the ultrasonic waves propagating through a medium are related to the microscopic structure of the material and they provide valuable information about the structural changes in the system. Among the various ultrasonic techniques, the pulse echo overlap method is the most accurate and precise one. In the present case the decreased elastic properties of Cas-XMg,Nb2TiO12 and Cas-,ZnNb2TiO12 ceramics can be attributed to their mixture phases beyond x = 1. Moreover, the abrupt change in elastic properties observed for x >1 can also be correlated to the structural transformation of the materials from their phase pure form to mixture phases for higher extent of substitution of the concerned material . Ca4(ANb2Ti)012 (A = Mg, Zn) is the strongest compound with the maximum values for elastic properties . This could be due to the possible substitution of Mg/Zn ions with lesser radius [25] than Ca2+ in perovskite B-site of Ca(Cali4Nb2i4Tili4) O3 material to contribute more ordering and symmetry to the system [20]. All other compositions (x > 1) contain mixed-phases and for such mixed-phase samples, the mechanical properties are difficult to explain.
Resumo:
Ceramic dielectric resonators in the BaO-RE2O3-TiO2 (RE=rare earth) system have been prepared by the conventional solid state ceramic route. The dielectric properties have been tailored by substitution of different rare earth oxides and by bismuth oxide addition. The dielectric constants increased with Bi addition whereas the Q decreased. The temperature coeffecient of the resonant frequency improved with bismuth addition.