6 resultados para Temperature increase

em Cochin University of Science


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The stratospheric warming events are categorized into major and minor warming depending on the temperature increase in the polar stratosphere. The warming is called a ‘major’, when the polar temperature increases poleward from 60 degree latitude and followed by a reversal in the zonal wind at 10 hPa (~32 Km). Usually major warming events are associated with the displacement of polar vortex from high to mid latitudes or the splitting of vortices in to two. The warming is called a "Minor", when the polar temperature increases more than 25 degree in a period of a week or less, at any stratospheric level with less intensified easterly wind anomalies. The stratospheric warmings generated during the transition period of winter to spring are called final warmings. The warming events observed in the early winter period (November to early December) over Canadian region are called Canadian warmings. There is strong interaction between stratosphere and troposphere during SSW period over high and low latitudes regions. The thesis consists of 7 chapters

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser‐induced damage and ablation thresholds of bulk superconducting samples of Bi2(SrCa)xCu3Oy(x=2, 2.2, 2.6, 2.8, 3) and Bi1.6 (Pb)xSr2Ca2Cu3 Oy (x=0, 0.1, 0.2, 0.3, 0.4) for irradiation with a 1.06 μm beam from a Nd‐YAG laser have been determined as a function of x by the pulsed photothermal deflection technique. The threshold values of power density for ablation as well as damage are found to increase with increasing values of x in both systems while in the Pb‐doped system the threshold values decrease above a specific value of x, coinciding with the point at which the Tc also begins to fall.  

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The SST convection relation over tropical ocean and its impact on the South Asian monsoon is the first part of this thesis. Understanding the complicated relation between SST and convection is important for better prediction of the variability of the Indian monsoon in subseasonal, seasonal, interannual, and longer time scales. Improved global data sets from satellite scatterometer observations of SST, precipitation and refined reanalysis of global wind fields have made it possible to do a comprehensive study of the SST convection relation. Interaction of the monsoon and Indian ocean has been discussed. A coupled feedback process between SST and the Active-Break cycle of the Asian summer monsoon is a central theme of the thesis. The relation between SST and convection is very important in the field of numerical modeling of tropical rainfall. It is well known that models generally do very well simulating rainfall in areas of tropical convergence zones but are found unable to do satisfactory simulation in the monsoon areas. Thus in this study we critically examined the different mechanisms of generation of deep convection over these two distinct regions.The study reported in chapter 3 has shown that SST - convection relation over the warm pool regions of Indian and west Pacific oceans (monsoon areas) is in such a way that convection increases with SST in the SST range 26-29 C and for SST higher than 29-30 C convection decreases with increase of SST (it is called Waliser type). It is found that convection is induced in areas with SST gradients in the warm pool areas of Indian and west Pacific oceans. Once deep convection is initiated in the south of the warmest region of warm pool, the deep tropospheric heating by the latent heat released in the convective clouds produces strong low level wind fields (Low level Jet - LLJ) on the equatorward side of the warm pool and both the convection and wind are found to grow through a positive feedback process. Thus SST through its gradient acts only as an initiator of convection. The central region of the warm pool has very small SST gradients and large values of convection are associated with the cyclonic vorticity of the LLJ in the atmospheric boundary layer. The conditionally unstable atmosphere in the tropics is favorable for the production of deep convective clouds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocomposites with magnetic components possessing nanometric dimensions, lying in the range 1–10 nm, are found to be exhibiting superior physical properties with respect to their coarser sized counterparts. Magnetic nanocomposites based on gamma iron oxide embedded in a polymer matrix have been prepared and characterized. The behaviour of these samples at low temperatures have been studied using Mössbauer spectroscopy. Mössbauer studies indicate that the composites consist of very fine particles of g-Fe2O3 of which some amount exists in the superparamagnetic phase. The cycling of the preparative conditions were found to increase the amount of g-Fe2O3 in the matrix

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nearly half of lanthanum sites in lanthanum manganites were substituted with monovalent ion-sodium and the compound possessed distorted orthorhombic structure. Ferromagnetic ordering at 300K and the magnetic isotherms at different temperature ranges were analyzed for estimating magnetic entropy variation. Magnetic entropy change of 1.5 J kg 1 K 1 was observed near 300 K. An appreciable magnetocaloric effect was also observed for a wide range of temperatures near 300K for small magnetic field variation. Heat capacity was measured for temperatures lower than 300K and the adiabatic temperature change increases with increase in temperature with a maximum of 0.62K at 280 K

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magnetic properties of Mn-doped ZnO (ZnO:Mn) nanorods grown by hydrothermal process at a temperature of 200 8C and a growth time of 3 h have been studied. The samples were characterized by using powder X-ray diffraction with Rietveld refinement, scanning electron microscopy, energy-dispersive X-ray analysis and SQUID magnetometry. Mn (3 wt%) and (5 wt%)-doped ZnO samples exhibit paramagnetic and ferromagnetic behavior, respectively, at room temperature. The spin-glass behavior is observed from the samples with respect to the decrease of temperature. At 10 K, both samples exhibit a hysteresis loop with relatively low coercivity. The room-temperature ferromagnetism in 5 wt% Mn-doped ZnO nanorods is attributed to the increase in the specific area of grain boundaries, interaction between dopant Mn2þ ions substituted at Zn2þ site and the interaction between Mn2þ ions and Zn2þ ions from the ZnO host lattice