50 resultados para Solid substrate cultivation

em Cochin University of Science


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biopulping being less energy intensive, inexpensive and causing lesser pollution, can be a viable alternative to chemical and mechanical pulping in paper and pulp industry. In view of shrinking forest reserves, agricultural residues are considered as an alternative raw material for making paper and board. By suitable treatment agriwaste can be converted into substrate for mushroom cultivation. Mushrooms of Pleurotus sp. can preferentially remove lignin from agriwaste with limited degradation to cellulose. The present study examines utilization of Pleurotus eous for biopulping of paddy straw by solid substrate fermentation. SMS, the mushroom growing medium that results from cultivation process, is a good source of fibre and can be pulped easily. Ligninases present in SMS were able to reduce lignin content to nearly half the initial amount by 21st day of cultivation. Highest cellulose content (% dry weight) was observed on 21st day, while cellulase production commenced from 28th day of cultivation. SEM images revealed that SMS fibres are still associated with non-cellulosic materials when compared to chemically (20% w/v NaOH) extracted fibres.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The continually growing worldwide hazardous waste problem is receiving much attention lately. The development of cost effective, yet efficient methods of decontamination are vital to our success in solving this problem.Bioremediation using white rot fungi, a group of basidiomycetes characterized by their ability to degrade lignin by producing extracellular LiP, MnP and laccase have come to be recognized globally which is described in detail in Chapter 1.These features provide them with tremendous advantages over other micro-organisms.Chapter 2 deals with the isolation and screening of lignin degrading enzyme producing micoro-organisms from mangrove area. Marine microbes of mangrove area has great capacity to tolerate wide fluctuations of salinitie.Primary and secondary screening for lignin degrading enzyme producing halophilic microbes from mangrove area resulted in the selection of two fungal strains from among 75 bacteria and 26 fungi. The two fungi, SIP 10 and SIP ll, were identified as penicillium sp and Aspergillus sp respectively belonging to the class Ascomycetes .Specific activity of the purified LiP was 7923 U/mg protein. The purification fold was 24.07 while the yield was 18.7%. SDS PAGE of LiP showed that it was a low molecular weight protein of 29 kDa.Zymogram analysis using crystal violet dye as substrate confirmed the peroxidase nature of the purified LiP.The studies on the ability of purified LiP to decolorize different synthetic dyes was done. Among the dyes studied, crystal violet, a triphenyl methane dye was decolorized to the greatest extent.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis an attempt is made to explore the potential of marine fungi for the production of chitinolytic enzymes and to recognize the ability to hydrolyse native chitin through submerged as well as solid substrate fermentation culture conditions, using wheat bran and shellfish processing waste such as ‘prawn waste’ as solid substrates. Attempt was made to isolate a potential chitinase producing fungus from marine environment and to develop an ideal bioprocess for the production ofchitolytic enzymes.Present study indicate scope for utilization of B. bassiana for industrial production of chitinase using prawn waste as solid substrate employing solid substrate fermentation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A critical survey of the fruits and vegetable markets of the towns and cities in South India reveals that banana fruit stalk wastes share a dominant proportion among the solid wastes generated. In the light of the review of literature presented in the foregoing section, few reports are available on the utilisation of banana waste for the production of alcoholic beverages, biogas, and single cell protein. However, it is not yet tried for the production of industrial enzymes. Moreover, preliminary fermentation studies conducted under uncontrolled conditions revealed that banana fruit stalk could be aptly utilised as solid substrate? for the industrial production of microbial amylases and cellulases at a cheaper cost. Therefore, it was proposed to conduct a detailed study towards the development of a suitable fermentation process for the production of industrial enzymes using banana fruit stalk wastes, which is rich in carbohydrate, as solid substrate, employing bacteria, under SSF.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Strain improvement is one of the major objectives for maximizing the microbial production of industrially significant primary and secondary metabolites. This goal can be achieved by judicious tuning of the organisms by monitoring its growth parameters and optimizing adequate supply of micro and macro nutrients, inducers, pH, temperature and other factors which control fermentation. Though C. rugosa has been under extensive studies for lipases, maximum world production is only 36 units. In fact, in India, enhanced production conditions for lipases have not yet been initiated. C. rugosa has been cultivated in diverse environments like liquid, semi-solid, solid—state and immobilized conditions, though major emphasis is on SmF or suspension culture. Hence the present investigations mainly focused on increasing the yield by adjusting the physico-chemical growth parameters and to characterize the lipase isoforms secreted by C. rugosa in the culture medium. Maximum possible improved methods were investigated to achieve these objectives. Within this under-optimised background, enhancement of lipase production and its characterization were investigated, employing modified liquid, semi-solid, solid—state and immobilized fermentation strategies

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bacillus subtilis CBTK 106, isolated from banana wastes, produced high titres of a-amylase when banana fruit stalk was used as substrate in a solid-state fermentation system. The e¤ects of initial moisture content, particle size, cooking time and temperature, pH, incubation temperature, additional nutrients, inoculum size and incubation period on the production of a- amylase were characterised. A maximum yield of 5 345 000 U mg~1 min~1 was recorded when pretreated banana fruit stalk (autoclaved at 121 ¡C for 60 min) was used as substrate with 70% initial moisture content, 400 lm particle size, an initial pH of 7.0, a temperature of 35 ¡C, and additional nutrients (ammonium sulphate/sodium nitrate at 1.0%, beef extract/peptone at 0.5%, glucose/sucrose/starch/maltose at 0.1% and potassium chloride/sodium chloride at 1.0%) in the medium, with an inoculum-to-substrate ratio of 10% (v/w) for 24 h. The enzyme yield was 2.65-fold higher with banana fruit stalk medium compared to wheat bran

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Commercially, Pleurotus spp. of mushroom are cultivated in bags. After mushroom cultivation, spent substrate remains as residual material. Proper recycling of spent substrate is beneficial for our economy. Spent substrate can be utilized for various other value added purposes through the proper knowledge of its components. Composition of various components depends on the activity of extracellular enzymes in the spent substrate. The present study was conducted to know the enzyme profile of some major extracellular enzymes - cellulase, hemicellulase (xylanase), pectinase and ligninase (lignin peroxidase and laccase) and to estimate cellulose, hemicellulose, pectin and lignin in the substrate. The use of spent substrate as a source of fibre and ethanol, and in the biodegradation of phenol by Pleurotus spp. was also investigated

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A chitinolytic fungus, Beau6eria bassiana was isolated from marine sediment and significant process parameters influencing chitinase production in solid state fermentation using wheat bran were optimised. The organism was strongly alkalophilic and produced maximum chitinase at pH 9·20. The NaCl and colloidal chitin requirements varied with the type of moistening medium used. Vegetative (mycelial) inoculum was more suitable than conidial inoculum for obtaining maximal enzyme yield. The addition of phosphate and yeast extract resulted in enhancement of chitinase yield. After optimisation, the maximum enzyme yield was 246·6 units g 1 initial dry substrate (U gIDS 1). This is the first report of the production of chitinase from a marine fungus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prawn waste, a chitinous solid waste of the shell®sh processing industry, was used as a substrate for chitinase production by the marine fungus Beauveria bassiana BTMF S10, in a solid state fermentation (SSF) culture. The process parameters in¯uencing SSF were optimized. A maximum chitinase yield of 248.0 units/g initial dry substrate (U/gIDS) was obtained in a medium containing a 5:1 ratio (w/v) of prawn waste/sea water, 1% (w/w) NaCl, 2.5% (w/w) KH2PO4, 425±600 lm substrate particle size at 27 °C, initial pH 9.5, and after 5 days of incubation. The presence of yeast extract reduced chitinase yield. The results indicate scope for the utilization of shell®sh processing (prawn) waste for the industrial production of chitinase by using solid state fermentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extracellular L-glutaminase production by Beau6eria sp., isolated from marine sediment, was observed during solid state fermentation using polystyrene as an inert support. Maximal enzyme production (49.89 U:ml) occurred at pH 9.0, 27°C, in a seawater based medium supplemented with L-glutamine (0.25% w:v) as substrate and D-glucose (0.5% w:v) as additional carbon source, after 96 h of incubation. Enzyme production was growth associated. Results indicate scope for production of salt tolerant L-glutaminase using this marine fungus

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Process parameters influencing e-glutaminase production by marine Vibrio costicola in solid state fermentation (SSF) using polystyrene as an inert support were optimised. Maximal enzyme yield (157 U/g dry substrate) was obtained at 2% (w/w) t:glutamine, 35°C and pH 7.0 after 24 h. Maltose and potassium dihydrogen phosphate at 1% (w/w) concentration enhanced enzyme yield by 23 and 18%, respectively, while nitrogen sources had an inhibitory effect. Leachate with high specific activity for glutaminase (4.2 U/mg protein) and low viscosity (0-966 Ns/m 2) was recovered from the polystyrene SSF system

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L - Glutaminase, a therapeutically and industrially important enzyme, was produced from marine Vibrio costicola by a novel solid state fermentation process using polystyrene beads as inert support. The new fermentation system offered several advantages over the conventional systems, such as the yield of leachate with minimum viscosity and high specific activity for the target product besides facilitating the easy estimation of biomass. The enzyme thus produced was purified and characterised. It was active at physiological pH, showed high substrate specificity towards L - glutamine and had a Km value of 7.4 x 10-2 M. It also exhibited high salt and temperature tolerance indicating good scope for its industrial and therapeutic applications

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spent substrate, the residual material of mushroom cultivation, causes disposal problems for cultivators. Currently the spent substrate of different mushrooms is used mainly for composting. Edible mushrooms of Pleurotus sp. can grow on a wide range of lignocellulosic substrates. In the present study, Pleurotus eous was grown on paddy straw and the spent substrate was used for the production of ethanol. Lignocellulosic biomass cannot be saccharified by enzymes to high yield of ethanol without pretreatment. The root cause for the recalcitrance of lignocellulosic biomass such as paddy straw is the presence of lignin and hemicelluloses on the surface of cellulose. They form a barrier and prevent cellulase from accessing the cellulose in the substrate. In the untreated paddy straw, the amount of hemicelluloses and lignin (in % dry weight) were 20.30 and 20.34 respectively and the total reducing sugar was estimated to be 5.40 mg/g. Extracellular xylanase and ligninases of P. eous could reduce the amount of hemicelluloses and lignin to 16 and 11(% dry weight) respectively, by 21st day of cultivation. Growth of mushroom brought a seven fold increase in the total reducing sugar yield (39.20 mg/g) and six fold increase in the production of ethanol (6.48 g/L) after 48hrs of fermentation, when compared to untreated paddy straw

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phenol is an aromatic hydrocarbon which exists as a colorless or white solid in its pure state. Over the past several decades, there is growing concern about wide spread contamination of surface and ground water by phenol, due to rapid development of chemical and petrochemical industries. Phenol affects aquatic life even at relatively low concentration (5-25mg/L). Treatment for removal of phenol includes chemical as well as biological processes. Studies show that ligninases such as Lignin Peroxidase and Laccase, produced by Pleurotus sp., can degrade phenol. Spent substrate of Pleurotus mushrooms consists of ligninases. Present work was to investigate the potential of spent substrate of edible mushroom P. ostreatus for biodegradation of phenol. P. ostreatus was cultivated on paddy straw. After harvest, spent substrate was utilized for phenol degradation. According to the enzyme profile of two ligninases present in the spent substrate of P. ostreatus, maximum specific activity for Laccase was observed in 35 day old spent substrate and LiP activity was maximum in 56 day old spent substrate, which together contributed significantly for removal of phenol. Spent substrate of 35th and 56th day were each incubated with phenol sample (1:1w/v) for one day, which resulted in degradation of phenol by 48% and 45% respectively. From these results it appears that, spent substrate of P. ostreatus can be used effectively to remove phenol from industrial effluents

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was undertaken to isolate ligninase-producing white-rot fungi for use in the extraction of fibre from pineapple leaf agriwaste. Fifteen fungal strains were isolated from dead tree trunks and leaf litter. Ligninolytic enzymes (lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (Lac)), were produced by solid-state fermentation (SSF) using pineapple leaves as the substrate. Of the isolated strains, the one showing maximum production of ligninolytic enzymes was identified to be Ganoderma lucidum by 18S ribotyping. Single parameter optimization and response surface methodology of different process variables were carried out for enzyme production. Incubation period, agitation, and Tween-80 were identified to be the most significant variables through Plackett-Burman design. These variables were further optimized by Box-Behnken design. The overall maximum yield of ligninolytic enzymes was achieved by experimental analysis under these optimal conditions. Quantitative lignin analysis of pineapple leaves by Klason lignin method showed significant degradation of lignin by Ganoderma lucidum under SSF