30 resultados para Simultaneous optimization
em Cochin University of Science
Resumo:
Significant results of our experimental investigations on the dependence of pH on real time transmission characteristics on recording media fabricated by doping PVC with complexed methylene blue are presented. The optimum pH value for faster bleaching was found to be 4×5. In typical applications, the illumination from one side, normal to the surface of this material, initiates a chemical sequence that records the incident light pattern in the polymer. Thus direct imaging can be successfully done on this sample. The recorded letters were very legible with good contrast and no scattering centres. Diffraction efficiency measurements were also carried out on this material.
Resumo:
Significant results of our experimental investigations on the dependence of pH on real time transmission characteristics on recording media fabricated by doping PVC with complexed methylene blue are presented. The optimum pH value for faster bleaching was found to be 4×5. In typical applications, the illumination from one side, normal to the surface of this material, initiates a chemical sequence that records the incident light pattern in the polymer. Thus direct imaging can be successfully done on this sample. The recorded letters were very legible with good contrast and no scattering centres. Diffraction efficiency measurements were also carried out on this material.
Resumo:
Significant results of our experimental investigations on the dependence of pH on real time transmission characteristics on recording media fabricated by doping PVC with complexed methylene blue are presented. The optimum pH value for faster bleaching was found to be 4 . 5. In typical applications, the illumination from one side, normal to the surface of this material, initiates a chemical sequence that records the incident light pattern in the polymer. Thus direct imaging can be successfully done on this sample. The recorded letters were very legible with good contrast and no scattering centres. Diffraction efficiency measurements were also carried out on this material.
Resumo:
Aim: To develop a new medium for enhanced production of biomass of an aquaculture probiotic Pseudomonas MCCB 103 and its antagonistic phenazine compound, pyocyanin. Methods and Results: Carbon and nitrogen sources and growth factors, such as amino acids and vitamins, were screened initially in a mineral medium for the biomass and antagonistic compound of Pseudomonas MCCB 103. The selected ingredients were further optimized using a full-factorial central composite design of the response surface methodology. The medium optimized as per the model for biomass contained mannitol (20 g l)1), glycerol (20 g l)1), sodium chloride (5 g l)1), urea (3Æ3 g l)1) and mineral salts solution (20 ml l)1), and the one optimized for the antagonistic compound contained mannitol (2 g l)1), glycerol (20 g l)1), sodium chloride (5Æ1 g l)1), urea (3Æ6 g l)1) and mineral salts solution (20 ml l)1). Subsequently, the model was validated experimentally with a biomass increase by 19% and fivefold increase of the antagonistic compound. Conclusion: Significant increase in the biomass and antagonistic compound production could be obtained in the new media. Significance and Impact of the Study: Media formulation and optimization are the primary steps involved in bioprocess technology, an attempt not made so far in the production of aquaculture probiotics.
Resumo:
The thesis deals with the preparation and dielectric characterization of Poly aniline and its analogues in ISM band frequency of 2-4 GHz that includes part of the microwave region (300 MHz to 300 GHz) of the electromagnetic spectrum and an initial dielectric study in the high frequency [O.05MHz-13 MHz]. PolyaniIine has been synthesized by an in situ doping reaction under different temperature and in the presence of inorganic dopants such as HCl H2S04, HN03, HCl04 and organic dopants such as camphorsulphonic acid [CSA], toluenesulphonic acid {TSA) and naphthalenesulphonic acid [NSA]. The variation in dielectric properties with change in reaction temperature, dopants and frequency has been studied. The effect of codopants and microemulsions on the dielectric properties has also been studied in the ISM band. The ISM band of frequencies (2-4 GHz) is of great utility in Industrial, Scientific and Medical (ISM) applications. Microwave heating is a very efficient method of heating dielectric materials and is extensively used in industrial as well as household heating applications.
Resumo:
The main source of protein for human and animal consumption is from the agricultural sector, where the production is vulnerable to diseases, fluctuations in climatic conditions and deteriorating hydrological conditions due to water pollution. Therefore Single Cell Protein (SCP) production has evolved as an excellent alternative. Among all sources of microbial protein, yeast has attained global acceptability and has been preferred for SCP production. The screening and evaluation of nutritional and other culture variables of microorganisms are very important in the development of a bioprocess for SCP production. The application of statistical experimental design in bioprocess development can result in improved product yields, reduced process variability, closer confirmation of the output response to target requirements and reduced development time and overall cost.The present work was undertaken to develop a bioprocess technology for the mass production of a marine yeast, Candida sp.S27. Yeasts isolated from the offshore waters of the South west coast of India and maintained in the Microbiology Laboratory were subjected to various tests for the selection of a potent strain for biomass production. The selected marine yeast was identified based on ITS sequencing. Biochemical/nutritional characterization of Candida sp.S27 was carried out. Using Response Surface Methodology (RSM) the process parameters (pH, temperature and salinity) were optimized. For mass production of yeast biomass, a chemically defined medium (Barnett and Ingram, 1955) and a crude medium (Molasses-Yeast extract) were optimized using RSM. Scale up of biomass production was done in a Bench top Fermenter using these two optimized media. Comparative efficacy of the defined and crude media were estimated besides nutritional evaluation of the biomass developed using these two optimized media.
Resumo:
Two stage processes consisting of precursor preparation by thermal evaporation followed by chalcogenisation in the required atmosphere is found to be a feasible technique for the PV materials such as n-Beta In2S3, p-CulnSe2, p-CulnS2 and p-CuIn(Sel_xSx)2. The growth parameters such as chalcogenisation temperature and duration of chalcogenisation etc have been optimised in the present study.Single phase Beta-In2S3 thin films can be obtained by sulfurising the indium films above 300°C for 45 minutes. Low sulfurisation temperatures required prolonged annealing after the sulfurisation to obtain single phase Beta-1n2S3, which resulted in high material loss. The maximum band gap of 2.58 eV was obtained for the nearly stoichiometric Beta-In2S3 film which was sulfurised at 350°C. This wider band gap, n type Beta-In2S3 can be used as an alternative to toxic CdS as window layer in photovoltaics .The systematic study on the structural optical and electrical properties of CuInSe2 films by varying the process parameters such as the duration of selenization and the selenization temperature led to the conclusion that for the growth of single-phase CuInSe2, the optimum selenization temperature is 350°C and duration is 3 hours. The presence of some binary phases in films for shorter selenization period and lower selenization temperature may be due to the incomplete reaction and indium loss. Optical band gap energy of 1.05 eV obtained for the films under the optimum condition.In order to obtain a closer match to the solar spectrum it is desirable to increase the band gap of the CulnSe2 by a few meV . Further research works were carried out to produce graded band gap CuIn(Se,S)2 absorber films by incorporation of sulfur into CuInSe2. It was observed that when the CulnSe2 prepared by two stage process were post annealed in sulfur atmosphere, the sulfur may be occupying the interstitial positions or forming a CuInS2 phase along with CuInSe2 phase. The sulfur treatment during the selenization process OfCu11 ln9 precursors resulted in Culn (Se,S)2 thin films. A band gap of 1.38 eV was obtained for the CuIn(Se,S)2.The optimised thin films n-beta 1n2S3, p-CulnSe2 and p-Culn(Sel-xSx)2 can be used for fabrication of polycrystalline solar cells.
Resumo:
The authors apply the theory of photothermal lens formation and also that of pure optical nonlinearity to account for the phase modulation in a beam as it traverses a nonlinear medium. It is used to simultaneously determine the nonlinear optical refraction and the thermo-optic coefficient. They demonstrate this technique using some metal phthalocyanines dissolved in dimethyl sulfoxide, irradiated by a Q-switched Nd:YAG laser with 10 Hz repetition rate and a pulse width of 8 ns. The mechanism for reverse saturable absorption in these materials is also discussed.
Resumo:
The design and development of a cost-effective, simple, sensitive and portable LED based fiber optic evanescent wave sensor for simultaneously detecting trace amounts of chromium and nitrite in water are presented. In order to obtain the desired performance, the middle portions of two multimode plastic clad silica fibers are unclad and are used as the sensing elements in the two arms of the sensor. Each of the sensor arms is sourced by separate super bright green LEDs, which are modulated in a time-sharing manner and a single photo detector is employed for detecting these light signals. The performance and characteristics of this system clearly establish the usefulness of the technique for detecting very low concentrations of the dissolved contaminants.
Resumo:
To ensure quality of machined products at minimum machining costs and maximum machining effectiveness, it is very important to select optimum parameters when metal cutting machine tools are employed. Traditionally, the experience of the operator plays a major role in the selection of optimum metal cutting conditions. However, attaining optimum values each time by even a skilled operator is difficult. The non-linear nature of the machining process has compelled engineers to search for more effective methods to attain optimization. The design objective preceding most engineering design activities is simply to minimize the cost of production or to maximize the production efficiency. The main aim of research work reported here is to build robust optimization algorithms by exploiting ideas that nature has to offer from its backyard and using it to solve real world optimization problems in manufacturing processes.In this thesis, after conducting an exhaustive literature review, several optimization techniques used in various manufacturing processes have been identified. The selection of optimal cutting parameters, like depth of cut, feed and speed is a very important issue for every machining process. Experiments have been designed using Taguchi technique and dry turning of SS420 has been performed on Kirlosker turn master 35 lathe. Analysis using S/N and ANOVA were performed to find the optimum level and percentage of contribution of each parameter. By using S/N analysis the optimum machining parameters from the experimentation is obtained.Optimization algorithms begin with one or more design solutions supplied by the user and then iteratively check new design solutions, relative search spaces in order to achieve the true optimum solution. A mathematical model has been developed using response surface analysis for surface roughness and the model was validated using published results from literature.Methodologies in optimization such as Simulated annealing (SA), Particle Swarm Optimization (PSO), Conventional Genetic Algorithm (CGA) and Improved Genetic Algorithm (IGA) are applied to optimize machining parameters while dry turning of SS420 material. All the above algorithms were tested for their efficiency, robustness and accuracy and observe how they often outperform conventional optimization method applied to difficult real world problems. The SA, PSO, CGA and IGA codes were developed using MATLAB. For each evolutionary algorithmic method, optimum cutting conditions are provided to achieve better surface finish.The computational results using SA clearly demonstrated that the proposed solution procedure is quite capable in solving such complicated problems effectively and efficiently. Particle Swarm Optimization (PSO) is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. From the results it has been observed that PSO provides better results and also more computationally efficient.Based on the results obtained using CGA and IGA for the optimization of machining process, the proposed IGA provides better results than the conventional GA. The improved genetic algorithm incorporating a stochastic crossover technique and an artificial initial population scheme is developed to provide a faster search mechanism. Finally, a comparison among these algorithms were made for the specific example of dry turning of SS 420 material and arriving at optimum machining parameters of feed, cutting speed, depth of cut and tool nose radius for minimum surface roughness as the criterion. To summarize, the research work fills in conspicuous gaps between research prototypes and industry requirements, by simulating evolutionary procedures seen in nature that optimize its own systems.
Resumo:
The beta-glucosidase enzyme purified from the marine fungus, Aspergillus sydowii BTMFS 55 showed a good yield of enzyme production under solid state fermentation. The statistical optimization of the media components revealed that moisture content, concentration of peptone and inoculum are the major parameters which supported the maximal enzyme production. The purified enzyme showed low pH activity and stability, glucose tolerance and activation by ethanol. It could produce ethanol from wheat bran and rice straw by simultaneous saccharification and fermentation with yeast.The glucosidase purified from Aspergillus sydowii BTMFS 55 shows great potential for several biotechnological applications such as the production of bio-ethanol from agricultural biomass and improvement in the aromatic character of wines and fruit juices through the hydrolysis of flavour glucosidic precursors. There is immense scope for the application of this marine fungus in the biofuel production besides in other industries provided further studies are pursued in exploiting this enzyme and the organism particularly scale up studies with respect to application. There is also ample scope for cloning of the gene encoding beta-glucosidase in domesticated hosts such as Pichia pastoris or S. cerevisiae that can produce ethanol directly from cellulosic biomass.
Resumo:
Controlling the inorganic nitrogen by manipulating carbon / nitrogen ratio is a method gaining importance in aquaculture systems. Nitrogen control is induced by feeding bacteria with carbohydrates and through the subsequent uptake of nitrogen from the water for the synthesis of microbial proteins. The relationship between addition of carbohydrates, reduction of ammonium and the production of microbial protein depends on the microbial conversion coefficient. The carbon / nitrogen ratio in the microbial biomass is related to the carbon contents of the added material. The addition of carbonaceous substrate was found to reduce inorganic nitrogen in shrimp culture ponds and the resultant microbial proteins are taken up by shrimps. Thus, part of the feed protein is replaced and feeding costs are reduced in culture systems.The use of various locally available substrates for periphyton based aquaculture practices increases production and profitability .However, these techniques for extensive shrimp farming have not so far been evaluated. Moreover, an evaluation of artificial substrates together with carbohydrate source based farming system in reducing inorganic nitrogen production in culture systems has not yet been carried-out. Furthermore, variations in water and soil quality, periphyton production and shrimp production of the whole system have also not been determined so-far.This thesis starts with a general introduction , a brief review of the most relevant literature, results of various experiments and concludes with a summary (Chapter — 9). The chapters are organised conforming to the objectives of the present study. The major objectives of this thesis are, to improve the sustainability of shrimp farming by carbohydrate addition and periphyton substrate based shrimp production and to improve the nutrient utilisation in aquaculture systems.
Resumo:
The proliferation of wireless sensor networks in a large spectrum of applications had been spurered by the rapid advances in MEMS(micro-electro mechanical systems )based sensor technology coupled with low power,Low cost digital signal processors and radio frequency circuits.A sensor network is composed of thousands of low cost and portable devices bearing large sensing computing and wireless communication capabilities. This large collection of tiny sensors can form a robust data computing and communication distributed system for automated information gathering and distributed sensing.The main attractive feature is that such a sensor network can be deployed in remote areas.Since the sensor node is battery powered,all the sensor nodes should collaborate together to form a fault tolerant network so as toprovide an efficient utilization of precious network resources like wireless channel,memory and battery capacity.The most crucial constraint is the energy consumption which has become the prime challenge for the design of long lived sensor nodes.
Resumo:
Computational Biology is the research are that contributes to the analysis of biological data through the development of algorithms which will address significant research problems.The data from molecular biology includes DNA,RNA ,Protein and Gene expression data.Gene Expression Data provides the expression level of genes under different conditions.Gene expression is the process of transcribing the DNA sequence of a gene into mRNA sequences which in turn are later translated into proteins.The number of copies of mRNA produced is called the expression level of a gene.Gene expression data is organized in the form of a matrix. Rows in the matrix represent genes and columns in the matrix represent experimental conditions.Experimental conditions can be different tissue types or time points.Entries in the gene expression matrix are real values.Through the analysis of gene expression data it is possible to determine the behavioral patterns of genes such as similarity of their behavior,nature of their interaction,their respective contribution to the same pathways and so on. Similar expression patterns are exhibited by the genes participating in the same biological process.These patterns have immense relevance and application in bioinformatics and clinical research.Theses patterns are used in the medical domain for aid in more accurate diagnosis,prognosis,treatment planning.drug discovery and protein network analysis.To identify various patterns from gene expression data,data mining techniques are essential.Clustering is an important data mining technique for the analysis of gene expression data.To overcome the problems associated with clustering,biclustering is introduced.Biclustering refers to simultaneous clustering of both rows and columns of a data matrix. Clustering is a global whereas biclustering is a local model.Discovering local expression patterns is essential for identfying many genetic pathways that are not apparent otherwise.It is therefore necessary to move beyond the clustering paradigm towards developing approaches which are capable of discovering local patterns in gene expression data.A biclusters is a submatrix of the gene expression data matrix.The rows and columns in the submatrix need not be contiguous as in the gene expression data matrix.Biclusters are not disjoint.Computation of biclusters is costly because one will have to consider all the combinations of columans and rows in order to find out all the biclusters.The search space for the biclustering problem is 2 m+n where m and n are the number of genes and conditions respectively.Usually m+n is more than 3000.The biclustering problem is NP-hard.Biclustering is a powerful analytical tool for the biologist.The research reported in this thesis addresses the problem of biclustering.Ten algorithms are developed for the identification of coherent biclusters from gene expression data.All these algorithms are making use of a measure called mean squared residue to search for biclusters.The objective here is to identify the biclusters of maximum size with the mean squared residue lower than a given threshold. All these algorithms begin the search from tightly coregulated submatrices called the seeds.These seeds are generated by K-Means clustering algorithm.The algorithms developed can be classified as constraint based,greedy and metaheuristic.Constarint based algorithms uses one or more of the various constaints namely the MSR threshold and the MSR difference threshold.The greedy approach makes a locally optimal choice at each stage with the objective of finding the global optimum.In metaheuristic approaches particle Swarm Optimization(PSO) and variants of Greedy Randomized Adaptive Search Procedure(GRASP) are used for the identification of biclusters.These algorithms are implemented on the Yeast and Lymphoma datasets.Biologically relevant and statistically significant biclusters are identified by all these algorithms which are validated by Gene Ontology database.All these algorithms are compared with some other biclustering algorithms.Algorithms developed in this work overcome some of the problems associated with the already existing algorithms.With the help of some of the algorithms which are developed in this work biclusters with very high row variance,which is higher than the row variance of any other algorithm using mean squared residue, are identified from both Yeast and Lymphoma data sets.Such biclusters which make significant change in the expression level are highly relevant biologically.
Resumo:
Faculty of Marine Sciences,Cochin University of Science and Technology