27 resultados para Reliability, Failure Distribution Function, Hazard Rate, Exponential Distribution
em Cochin University of Science
Resumo:
In this paper, we examine the relationships between log odds rate and various reliability measures such as hazard rate and reversed hazard rate in the context of repairable systems. We also prove characterization theorems for some families of distributions viz. Burr, Pearson and log exponential models. We discuss the properties and applications of log odds rate in weighted models. Further we extend the concept to the bivariate set up and study its properties.
Resumo:
Reliability analysis is a well established branch of statistics that deals with the statistical study of different aspects of lifetimes of a system of components. As we pointed out earlier that major part of the theory and applications in connection with reliability analysis were discussed based on the measures in terms of distribution function. In the beginning chapters of the thesis, we have described some attractive features of quantile functions and the relevance of its use in reliability analysis. Motivated by the works of Parzen (1979), Freimer et al. (1988) and Gilchrist (2000), who indicated the scope of quantile functions in reliability analysis and as a follow up of the systematic study in this connection by Nair and Sankaran (2009), in the present work we tried to extend their ideas to develop necessary theoretical framework for lifetime data analysis. In Chapter 1, we have given the relevance and scope of the study and a brief outline of the work we have carried out. Chapter 2 of this thesis is devoted to the presentation of various concepts and their brief reviews, which were useful for the discussions in the subsequent chapters .In the introduction of Chapter 4, we have pointed out the role of ageing concepts in reliability analysis and in identifying life distributions .In Chapter 6, we have studied the first two L-moments of residual life and their relevance in various applications of reliability analysis. We have shown that the first L-moment of residual function is equivalent to the vitality function, which have been widely discussed in the literature .In Chapter 7, we have defined percentile residual life in reversed time (RPRL) and derived its relationship with reversed hazard rate (RHR). We have discussed the characterization problem of RPRL and demonstrated with an example that the RPRL for given does not determine the distribution uniquely
Resumo:
So far, in the bivariate set up, the analysis of lifetime (failure time) data with multiple causes of failure is done by treating each cause of failure separately. with failures from other causes considered as independent censoring. This approach is unrealistic in many situations. For example, in the analysis of mortality data on married couples one would be interested to compare the hazards for the same cause of death as well as to check whether death due to one cause is more important for the partners’ risk of death from other causes. In reliability analysis. one often has systems with more than one component and many systems. subsystems and components have more than one cause of failure. Design of high-reliability systems generally requires that the individual system components have extremely high reliability even after long periods of time. Knowledge of the failure behaviour of a component can lead to savings in its cost of production and maintenance and. in some cases, to the preservation of human life. For the purpose of improving reliability. it is necessary to identify the cause of failure down to the component level. By treating each cause of failure separately with failures from other causes considered as independent censoring, the analysis of lifetime data would be incomplete. Motivated by this. we introduce a new approach for the analysis of bivariate competing risk data using the bivariate vector hazard rate of Johnson and Kotz (1975).
Resumo:
The present work is intended to discuss various properties and reliability aspects of higher order equilibrium distributions in continuous, discrete and multivariate cases, which contribute to the study on equilibrium distributions. At first, we have to study and consolidate the existing literature on equilibrium distributions. For this we need some basic concepts in reliability. These are being discussed in the 2nd chapter, In Chapter 3, some identities connecting the failure rate functions and moments of residual life of the univariate, non-negative continuous equilibrium distributions of higher order and that of the baseline distribution are derived. These identities are then used to characterize the generalized Pareto model, mixture of exponentials and gamma distribution. An approach using the characteristic functions is also discussed with illustrations. Moreover, characterizations of ageing classes using stochastic orders has been discussed. Part of the results of this chapter has been reported in Nair and Preeth (2009). Various properties of equilibrium distributions of non-negative discrete univariate random variables are discussed in Chapter 4. Then some characterizations of the geo- metric, Waring and negative hyper-geometric distributions are presented. Moreover, the ageing properties of the original distribution and nth order equilibrium distribu- tions are compared. Part of the results of this chapter have been reported in Nair, Sankaran and Preeth (2012). Chapter 5 is a continuation of Chapter 4. Here, several conditions, in terms of stochastic orders connecting the baseline and its equilibrium distributions are derived. These conditions can be used to rede_ne certain ageing notions. Then equilibrium distributions of two random variables are compared in terms of various stochastic orders that have implications in reliability applications. In Chapter 6, we make two approaches to de_ne multivariate equilibrium distribu- tions of order n. Then various properties including characterizations of higher order equilibrium distributions are presented. Part of the results of this chapter have been reported in Nair and Preeth (2008). The Thesis is concluded in Chapter 7. A discussion on further studies on equilib- rium distributions is also made in this chapter.
Resumo:
In this thesis, the concept of reversed lack of memory property and its generalizations is studied.We we generalize this property which involves operations different than the ”addition”. In particular an associative, binary operator ” * ” is considered. The univariate reversed lack of memory property is generalized using the binary operator and a class of probability distributions which include Type 3 extreme value, power function, reflected Weibull and negative Pareto distributions are characterized (Asha and Rejeesh (2009)). We also define the almost reversed lack of memory property and considered the distributions with reversed periodic hazard rate under the binary operation. Further, we give a bivariate extension of the generalized reversed lack of memory property and characterize a class of bivariate distributions which include the characterized extension (CE) model of Roy (2002a) apart from the bivariate reflected Weibull and power function distributions. We proved the equality of local proportionality of the reversed hazard rate and generalized reversed lack of memory property. Study of uncertainty is a subject of interest common to reliability, survival analysis, actuary, economics, business and many other fields. However, in many realistic situations, uncertainty is not necessarily related to the future but can also refer to the past. Recently, Di Crescenzo and Longobardi (2009) introduced a new measure of information called dynamic cumulative entropy. Dynamic cumulative entropy is suitable to measure information when uncertainty is related to the past, a dual concept of the cumulative residual entropy which relates to uncertainty of the future lifetime of a system. We redefine this measure in the whole real line and study its properties. We also discuss the implications of generalized reversed lack of memory property on dynamic cumulative entropy and past entropy.In this study, we extend the idea of reversed lack of memory property to the discrete set up. Here we investigate the discrete class of distributions characterized by the discrete reversed lack of memory property. The concept is extended to the bivariate case and bivariate distributions characterized by this property are also presented. The implication of this property on discrete reversed hazard rate, mean past life, and discrete past entropy are also investigated.
Resumo:
In this article we introduce some structural relationships between weighted and original variables in the context of maintainability function and reversed repair rate. Furthermore, we prove some characterization theorems for specific models such as power, exponential, Pareto II, beta, and Pearson system of distributions using the relationships between the original and weighted random variables
Resumo:
Department of Statistics, Cochin University of Science and Technology
Resumo:
In this paper, the residual Kullback–Leibler discrimination information measure is extended to conditionally specified models. The extension is used to characterize some bivariate distributions. These distributions are also characterized in terms of proportional hazard rate models and weighted distributions. Moreover, we also obtain some bounds for this dynamic discrimination function by using the likelihood ratio order and some preceding results.
Resumo:
In this paper, a family of bivariate distributions whose marginals are weighted distributions in the original variables is studied. The relationship between the failure rates of the derived and original models are obtained. These relationships are used to provide some characterizations of specific bivariate models
Resumo:
The present study gave emphasis on characterizing continuous probability distributions and its weighted versions in univariate set up. Therefore a possible work in this direction is to study the properties of weighted distributions for truncated random variables in discrete set up. The problem of extending the measures into higher dimensions as well as its weighted versions is yet to be examined. As the present study focused attention to length-biased models, the problem of studying the properties of weighted models with various other weight functions and their functional relationships is yet to be examined.
Characterizations of Bivariate Models Using Some Dynamic Conditional Information Divergence Measures
Resumo:
In this article, we study some relevant information divergence measures viz. Renyi divergence and Kerridge’s inaccuracy measures. These measures are extended to conditionally specifiedmodels and they are used to characterize some bivariate distributions using the concepts of weighted and proportional hazard rate models. Moreover, some bounds are obtained for these measures using the likelihood ratio order
Resumo:
The present study on the characterization of probability distributions using the residual entropy function. The concept of entropy is extensively used in literature as a quantitative measure of uncertainty associated with a random phenomenon. The commonly used life time models in reliability Theory are exponential distribution, Pareto distribution, Beta distribution, Weibull distribution and gamma distribution. Several characterization theorems are obtained for the above models using reliability concepts such as failure rate, mean residual life function, vitality function, variance residual life function etc. Most of the works on characterization of distributions in the reliability context centers around the failure rate or the residual life function. The important aspect of interest in the study of entropy is that of locating distributions for which the shannon’s entropy is maximum subject to certain restrictions on the underlying random variable. The geometric vitality function and examine its properties. It is established that the geometric vitality function determines the distribution uniquely. The problem of averaging the residual entropy function is examined, and also the truncated form version of entropies of higher order are defined. In this study it is established that the residual entropy function determines the distribution uniquely and that the constancy of the same is characteristics to the geometric distribution
Resumo:
In the present environment, industry should provide the products of high quality. Quality of products is judged by the period of time they can successfully perform their intended functions without failure. The cause of the failures can be ascertained through life testing experiments and the times to failure due to different cause are likely to follow different distributions. Knowledge of this distribution is essential to eliminate causes of failures and thereby to improve the quality and the reliability of products. The main accomplishment expected to the study is to develop statistical tools that could facilitate solution to lifetime data arising in such and similar contexts
Resumo:
This thesis entitled Reliability Modelling and Analysis in Discrete time Some Concepts and Models Useful in the Analysis of discrete life time data.The present study consists of five chapters. In Chapter II we take up the derivation of some general results useful in reliability modelling that involves two component mixtures. Expression for the failure rate, mean residual life and second moment of residual life of the mixture distributions in terms of the corresponding quantities in the component distributions are investigated. Some applications of these results are also pointed out. The role of the geometric,Waring and negative hypergeometric distributions as models of life lengths in the discrete time domain has been discussed already. While describing various reliability characteristics, it was found that they can be often considered as a class. The applicability of these models in single populations naturally extends to the case of populations composed of sub-populations making mixtures of these distributions worth investigating. Accordingly the general properties, various reliability characteristics and characterizations of these models are discussed in chapter III. Inference of parameters in mixture distribution is usually a difficult problem because the mass function of the mixture is a linear function of the component masses that makes manipulation of the likelihood equations, leastsquare function etc and the resulting computations.very difficult. We show that one of our characterizations help in inferring the parameters of the geometric mixture without involving computational hazards. As mentioned in the review of results in the previous sections, partial moments were not studied extensively in literature especially in the case of discrete distributions. Chapters IV and V deal with descending and ascending partial factorial moments. Apart from studying their properties, we prove characterizations of distributions by functional forms of partial moments and establish recurrence relations between successive moments for some well known families. It is further demonstrated that partial moments are equally efficient and convenient compared to many of the conventional tools to resolve practical problems in reliability modelling and analysis. The study concludes by indicating some new problems that surfaced during the course of the present investigation which could be the subject for a future work in this area.
Resumo:
The service quality of any sector has two major aspects namely technical and functional. Technical quality can be attained by maintaining technical specification as decided by the organization. Functional quality refers to the manner which service is delivered to customer which can be assessed by the customer feed backs. A field survey was conducted based on the management tool SERVQUAL, by designing 28 constructs under 7 dimensions of service quality. Stratified sampling techniques were used to get 336 valid responses and the gap scores of expectations and perceptions are analyzed using statistical techniques to identify the weakest dimension. To assess the technical aspects of availability six months live outage data of base transceiver were collected. The statistical and exploratory techniques were used to model the network performance. The failure patterns have been modeled in competing risk models and probability distribution of service outage and restorations were parameterized. Since the availability of network is a function of the reliability and maintainability of the network elements, any service provider who wishes to keep up their service level agreements on availability should be aware of the variability of these elements and its effects on interactions. The availability variations were studied by designing a discrete time event simulation model with probabilistic input parameters. The probabilistic distribution parameters arrived from live data analysis was used to design experiments to define the availability domain of the network under consideration. The availability domain can be used as a reference for planning and implementing maintenance activities. A new metric is proposed which incorporates a consistency index along with key service parameters that can be used to compare the performance of different service providers. The developed tool can be used for reliability analysis of mobile communication systems and assumes greater significance in the wake of mobile portability facility. It is also possible to have a relative measure of the effectiveness of different service providers.