43 resultados para Pulsed laser ablation in liquids

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser ablation processes in liquid benzene, toluene and carbon disulphide have been investigated by pulsed photoacoustic technique using 532 nm radiation from a frequency doubled Q-switched Nd:YAG laser. The nature of variation of photoacoustic signal amplitude with laser energy clearly indicates that different phenomena are involved in the generation of photoacoustic effect and these are discussed in detail. Our results suggest multiphoton induced photofragmentation as the most plausible interaction process occurring during laser ablation in these liquids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate the possibility of realizing, all-optical switching in gold nanosol. Two overlapping laser beams are used for this purpose, due to which a low-power beam passing collinear to a high-power beam will undergo cross phase modulation and thereby distort the spatial profile. This is taken to advantage for performing logic operations. We have also measured the threshold pump power to obtain a NOT gate and the minimum response time of the device. Contrary to the general notion that the response time of thermal effects used in this application is of the order of milliseconds, we prove that short pump pulses can result in fast switching. Different combinations of beam splitters and combiners will lead to the formation of other logic functions too.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transparent conducting oxides (TCO’s) have been known and used for technologically important applications for more than 50 years. The oxide materials such as In2O3, SnO2 and impurity doped SnO2: Sb, SnO2: F and In2O3: Sn (indium tin oxide) were primarily used as TCO’s. Indium based oxides had been widely used as TCO’s for the past few decades. But the current increase in the cost of indium and scarcity of this material created the difficulty in obtaining low cost TCO’s. Hence the search for alternative TCO material has been a topic of active research for the last few decades. This resulted in the development of various binary and ternary compounds. But the advantages of using binary oxides are the easiness to control the composition and deposition parameters. ZnO has been identified as the one of the promising candidate for transparent electronic applications owing to its exciting optoelectronic properties. Some optoelectronics applications of ZnO overlap with that of GaN, another wide band gap semiconductor which is widely used for the production of green, blue-violet and white light emitting devices. However ZnO has some advantages over GaN among which are the availability of fairly high quality ZnO bulk single crystals and large excitonic binding energy. ZnO also has much simpler crystal-growth technology, resulting in a potentially lower cost for ZnO based devices. Most of the TCO’s are n-type semiconductors and are utilized as transparent electrodes in variety of commercial applications such as photovoltaics, electrochromic windows, flat panel displays. TCO’s provide a great potential for realizing diverse range of active functions, novel functions can be integrated into the materials according to the requirement. However the application of TCO’s has been restricted to transparent electrodes, ii notwithstanding the fact that TCO’s are n-type semiconductors. The basic reason is the lack of p-type TCO, many of the active functions in semiconductor originate from the nature of pn-junction. In 1997, H. Kawazoe et al reported the CuAlO2 as the first p-type TCO along with the chemical design concept for the exploration of other p-type TCO’s. This has led to the fabrication of all transparent diode and transistors. Fabrication of nanostructures of TCO has been a focus of an ever-increasing number of researchers world wide, mainly due to their unique optical and electronic properties which makes them ideal for a wide spectrum of applications ranging from flexible displays, quantum well lasers to in vivo biological imaging and therapeutic agents. ZnO is a highly multifunctional material system with highly promising application potential for UV light emitting diodes, diode lasers, sensors, etc. ZnO nanocrystals and nanorods doped with transition metal impurities have also attracted great interest, recently, for their spin-electronic applications This thesis summarizes the results on the growth and characterization of ZnO based diodes and nanostructures by pulsed laser ablation. Various ZnO based heterojunction diodes have been fabricated using pulsed laser deposition (PLD) and their electrical characteristics were interpreted using existing models. Pulsed laser ablation has been employed to fabricate ZnO quantum dots, ZnO nanorods and ZnMgO/ZnO multiple quantum well structures with the aim of studying the luminescent properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly transparent, luminescent and biocompatible ZnO quantum dots were prepared in water, methanol, and ethanol using liquid-phase pulsed laser ablation technique without using any surfactant. Transmission electron microscopy analysis confirmed the formation of good crystalline ZnO quantum dots with a uniform size distribution of 7 nm. The emission wavelength could be varied by varying the native defect chemistry of ZnO quantum dots and the laser fluence. Highly luminescent nontoxic ZnO quantum dots have exciting application potential as florescent probes in biomedical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A silver target kept under partial vacuum conditions was irradiated with focused nanosecond pulses at 1:06 mm from a Nd:YAG laser. The electron emission monitored with a Langmuir probe shows a clear twin-peak distribution. The first peak which is very sharp has only a small delay and it indicates prompt electron emission with energy as much as 60 5 eV. Also the prompt electron emission shows a temporal profile with a width that is same as that for the laser pulse whereas the second peak is broader, covers several microseconds, and represents the low-energy electrons (2 0:5 eV) associated with the laser-induced silver plasma as revealed by time-of-flight measurements. It has been found that prompt electrons ejected from the target collisionally excite and ionize ambient gas molecules. Clearly resolved rotational structure is observed in the emission spectra of ambient nitrogen molecules. Combined with time-resolved spectroscopy, the prompt electrons can be used as excitation sources for various collisional excitation–relaxation experiments. The electron density corresponding to the first peak is estimated to be of the order of 1017 cm?--3 and it is found that the density increases as a function of distance away from the target. Dependence of probe current on laser intensity shows plasma shielding at high laser intensities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental method for measuring photoacoustic(PA) signals generated by a pulsed laser beam in liquids is described. The pulsed PA technique is found to be a convenient and accurate method for determination of quantum yield in fluorescent dye solutions. Concentration dependence of quantum yield of rhodamine 6G in water is studied using the above method. The results indicate that the quantum yield decreases with increase in concentration in the quenching region in agreement with the existing reports based on radiometric measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The acoustic signals generated in solids due to interaction with pulsed laser beam is used to determine the ablation threshold of bulk polymer samples of teflon (polytetrafluoroethylene) and nylon under the irradiation from a Q-switched Nd:YAG laser at 1.06µm wavelength. A suitably designed piezoelectric transducer is employed for the detection of photoacoustic (PA) signals generated in this process. It has been observed that an abrupt increase in the amplitude of the PA signal occurs at the ablation threshold. Also there exist distinct values for the threshold corresponding to different mechanisms operative in producing damages like surface morphology, bond breaking and melting processes at different laser energy densities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulsed photoacoustic measurements have been carried out in toluene at 532 nm wavelength using a Q-switched frequency doubled Nd:YAG laser. The variation of photoacoustic signal amplitude with incident laser power indicates that at lower laser powers one photon absorption takes place at this wavelength while a clear two photon absorption occurs in this liquid at higher laser powers. The studies made here demonstrate that pulsed photoacoustic technique is simple and effective for the investigation of multiphoton processes in liquids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laserinduced damage and ablation thresholds of bulk superconducting samples of Bi2(SrCa)xCu3Oy(x=2, 2.2, 2.6, 2.8, 3) and Bi1.6 (Pb)xSr2Ca2Cu3 Oy (x=0, 0.1, 0.2, 0.3, 0.4) for irradiation with a 1.06 μm beam from a Nd‐YAG laser have been determined as a function of x by the pulsed photothermal deflection technique. The threshold values of power density for ablation as well as damage are found to increase with increasing values of x in both systems while in the Pb‐doped system the threshold values decrease above a specific value of x, coinciding with the point at which the Tc also begins to fall.  

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser-induced plasma generated from a silver target under partial vacuum conditions using the fundamental output of nanosecond duration from a pulsed Nd:yttrium aluminum garnet laser is studied using a Langmuir probe. The time of flight measurements show a clear twin peak distribution in the temporal profile of electron emission. The first peak has almost the same duration as the laser pulse while the second lasts for several microseconds. The prompt electrons are energetic enough ('60 eV) to ionize the ambient gas molecules or atoms. The use of prompt electron pulses as sources for electron impact excitation is demonstrated by taking nitrogen, carbon dioxide, and argon as ambient gases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was conducted to identify the concentration dependence of the operating wavelengths and the relative intensities in which a dye mixture doped polymer optical fibre can operate. A comparative study of the radiative and Forster type energy transfer processes in Coumarin 540:Rhodamine 6G, Coumarin 540:Rhodamine B and Rhodamine 6G:Rhodamine B in methyl methacrylate (MMA) and poly(methyl methacrylate) (PMMA) was done by fabricating a series of dye mixture doped polymer rods which have two emission peaks with varying relative intensities. These rods can be used as preforms for the fabrication of polymer optical fibre amplifiers operating in the multi-wavelength regime. The 445 nm line from an Nd:YAG pumped optical parametric oscillator (OPO) was used as the excitation source for the first two dye pairs and a frequency doubled Nd:YAG laser emitting at 532 nm was used to excite the Rh 6G:Rh B pair. The fluorescence lifetimes of the donor molecule in pure form as well as in the mixtures were experimentally measured in both monomer and polymer matrices by time-correlated single photon counting technique. The energy transfer rate constants and transfer efficiencies were calculated and their dependence on the acceptor concentration was analysed. It was found that radiative energy transfer mechanisms are more efficient in all the three dye pairs in liquid and solid matrices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-photon induced photoemission optogalvanic effect which brings about a change in the discharge voltage when a pulsed dye laser beam is focused on a tungsten electrode has been described. The experiment is performed with N2, NO2 and Ar discharges. The magnitude of the signal voltage is studied as a function of laser energy and discharge current. The effective quantum efficiency in the discharge is found to be larger than that in the vacuum condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-photon induced photoemission optogalvanic effect which brings about a change in the discharge voltage when a pulsed dye laser beam is focused on a tungsten electrode has been described. The experiment is performed with N2, NO2 and Ar discharges. The magnitude of the signal voltage is studied as a function of laser energy and discharge current. The effective quantum efficiency in the discharge is found to be larger than that in the vacuum condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Materials exhibiting transparency and electrical conductivity simultaneously, transparent conductors, Transparent conducting oxides (TCOs), which have high transparency through the visible spectrum and high electrical conductivity are already being used in numerous applications. Low-emission windows that allow visible light through while reflecting the infrared, this keeps the heat out in summer, or the heat in, in winter. A thin conducting layer on or in between the glass panes achieves this. Low-emission windows use mostly F-doped SnO2. Most of these TCO’s are n type semiconductors and are utilized in a variety of commercial applications, such as flat-panel displays, photovoltaic devices, and electrochromic windows, in which they serve as transparent electrodes. Novel functions may be integrated into the materials since oxides have a variety of elements and crystal structures, providing great potential for realizing a diverse range of active functions. However, the application of TCOs has been restricted to transparent electrodes, notwithstanding the fact that TCOs are n-type semiconductors. The primary reason is the lack of p-type TCOs, because many of the active functions in semiconductors originate from the nature of the pn-junction. In 1997, H. Kawazoe et al.[2] reported CuAlO2 thin films as a first p-type TCO along with a chemical design concept for the exploration of other p-type TCOs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterojunction diodes of n-type ZnO/p-type silicon (100) were fabricated by 12 pulsed laser deposition of ZnO films on p-Si substrates in oxygen ambient at 13 different pressures. These heterojunctions were found to be rectifying with a 14 maximum forward-to-reverse current ratio of about 1,000 in the applied 15 voltage range of -5 V to +5 V. The turn-on voltage of the heterojunctions was 16 found to depend on the ambient oxygen pressure during the growth of the ZnO 17 film. The current density–voltage characteristics and the variation of the 18 series resistance of the n-ZnO/p-Si heterojunctions were found to be in line 19 with the Anderson model and Burstein-Moss (BM) shift.