8 resultados para Power Line Detection
em Cochin University of Science
Resumo:
Adaptive filter is a primary method to filter Electrocardiogram (ECG), because it does not need the signal statistical characteristics. In this paper, an adaptive filtering technique for denoising the ECG based on Genetic Algorithm (GA) tuned Sign-Data Least Mean Square (SD-LMS) algorithm is proposed. This technique minimizes the mean-squared error between the primary input, which is a noisy ECG, and a reference input which can be either noise that is correlated in some way with the noise in the primary input or a signal that is correlated only with ECG in the primary input. Noise is used as the reference signal in this work. The algorithm was applied to the records from the MIT -BIH Arrhythmia database for removing the baseline wander and 60Hz power line interference. The proposed algorithm gave an average signal to noise ratio improvement of 10.75 dB for baseline wander and 24.26 dB for power line interference which is better than the previous reported works
Resumo:
Department of Mathematics, Cochin University of Science and Technology
Resumo:
A fibre optic technique for detecting trace amounts of nitrite compounds in water is described. The off-line fibre optic sensor outlined here is based on evanescent field absorption in a test solution formed by the reaction of nitrite compounds in water with suitable chemical reagents. A short unclad portion of a plastic clad silica fibre acts as the sensing region. The experimental results clearly establish the usefulness of the present technique for detecting very low concentrations of the order of 1 ppb (parts per billion) of nitrite compounds with a large dynamic range of 1–1000 ppb. Such a high sensitivity enables the present device to be used for measuring the nitrite content in drinking water.
Resumo:
Absorption spectra of formaldehyde molecule in the gas phase have been recorded using photoacoustic (PA) technique with pulsed dye laser at various power levels. The spectral profiles at higher power levels are found to be different from that obtained at lower laser powers. Two photon absorption (TPA) is found to be responsible for the photoacoustic signal at higher laser power while the absorption at lower laser power level is attributed to one photon absorption (OPA) process. Probable assignments for the different transitions are given in this paper.
Resumo:
A laser produced plasma from the multielement solid target YBa2Cu3O7 is generated using 1.06 μm, 9 ns pulses from a Q-switched Nd:YAG laser in air at atmospheric pressure. A time resolved analysis of the profile of the 4554.03 Å resonance line emission from Ba II at various laser power densities has been carried out. It has been found that the line has a profile which is strongly self-reversed. It is also observed that at laser power densities equal to or exceeding 1.6×1011 W cm−2, a third peak begins to develop at the centre of the self-reversed profile and this has been interpreted as due to the anisotropic resonance scattering (fluorescence). The number densities of singly ionized barium ions evaluated from the width of the resonance line as a function of time delay with respect to the beginning of the laser pulse give typical values of the order of 1019 cm−3. The higher ion concentrations existing at smaller time delays are seen to decrease rapidly. The Ba II ions in the ground state resonantly absorb the radiation and this absorption is maximum around 120 ns after the laser pulse.
Resumo:
One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.
Resumo:
The motivatitni for" the present work is from .a project sanctioned by TSRO. The work involved the development of a quick and reliable test procedure using microwaves, for tflue inspection of cured propellant samples and a method to monitor the curing conditions of propellant mix undergoing the curing process.Normal testing CHE the propellant samples involvecuttimg a piece from each carton and testing it for their tensile strength. The values are then compared with standard ones and based on this result the sample isaccepted or rejected. The tensile strength is a measure ofdegree of cure of the propellant mix. But this measurementis a destructive procedure as it involves cutting of the sample. Moreover, it does not guarantee against nonuniform curing due to power failure, hot air-line failure,operator error etc. This necessitated the need for the development of a quick and reliable non-destructive test procedure.
Resumo:
In recent years, reversible logic has emerged as one of the most important approaches for power optimization with its application in low power CMOS, quantum computing and nanotechnology. Low power circuits implemented using reversible logic that provides single error correction – double error detection (SEC-DED) is proposed in this paper. The design is done using a new 4 x 4 reversible gate called ‘HCG’ for implementing hamming error coding and detection circuits. A parity preserving HCG (PPHCG) that preserves the input parity at the output bits is used for achieving fault tolerance for the hamming error coding and detection circuits.