21 resultados para Parameter extraction
em Cochin University of Science
Resumo:
Present work is aimed at development of an appropriate microbial technology for protection of larvae of macrobrachium rosenbergii from disease and to increase survival rate in hatcheries. Application of immunostimulants to activate the immune system of cultured animals against pathogen is the widely accepted alternative to antibiotics in aquaculture. The most important immunostimulant is glucan. Therefore a research programme entitled as extraction of glucan from Acremonium diospyri and its application in macrobrachium rosenbergii larval rearing system along with bacterians as microspheres. The main objectives of the study are development of aquaculture grade glucan from acremonium diospyri, microencapsulated drug delivery system for the larvae of M. rosenbergii and microencapsulated glucan with bacterian preparation for the enhanced production of M. rosenbergii in larval rearing system. Based on the results of field trials microencapsulated glucan with bacterin preparation, it is concluded that the microencapsulated preparation at a concentration of 25g per million larvae once in seven days will enhance the production and quality seed of M. rosenbergii.
Resumo:
The thesis entitled “ Investigations on the solvent extraction and luminescence of lanthanoids with mixtures of heterocyclic β-diketone S and various neutral oxo-donors” embodies the results of investigations carried out on the solvent extraction of trivalent lanthanoids with various heterocyclic β-diketones in the presence and absence of neutral oxo-donors and also on the luminescent studies of Eu3+-heterocyclic β-diketonate complexes with Lewis bases. The primary objective of the present work is to generate the knowledge base, especially to understand the interactions of lanthanoid-heterocyclic β-diketonates with various macrocyclic ligands such as crown ethers and neutral organophosphorus extractants , with a view to achieve better selectivity. The secondary objective of this thesis is to develop novel lanthanoid luminescent materials based on 3-phenyl-4-aroyl-5-isoxazolones and organophosphorus ligands, for use in electroluminescent devices. In the beginning it describes the need for the development of new mixed-ligand systems for the separation of lanthanoids and the development and importance of novel luminescent lanthanoid- β-diketonate complexes for display devices. The syntheses of various para substituted derivatives of 4-aroyl-5-isoxazolones and their characterization by various spectroscopic techniques are described. It also investigate the solvent extraction behaviour of trivalent lanthanoids with 4-aroyl-5-isoxazolones in the presence and absence of various crown ethers such as 18C6, DC18C6, DB18C6 and B18C6. Elemental analysis, IR and H NMR spectral studies are used to understand the interactions of crown ethers with 4-aroyl-5-isoxazolonate complexes of lanthanoids. The synergistic extraction of trivalent lanthanoids with sterically hindered 1-phenyl-3-methyl-4-pivaloyl-5-pyrazolone in the presence of various structurally related crown ethers are studied. The syntheses, characterization and photyphysical properties of Eu3+-4-aroyl-5-isoxazolonate complexes in the presence of Lewis bases like trictylphosphine oxide or triphenylphosphine oxide were studied.
Resumo:
Polymer-solvent interaction parameters for the blends of natural rubber (NR) with styrene-butadiene rubber (SBR) and polybutadiene rubber ( BR) are calculated using the Flory-Rehner equation by equating the network density of the vulcanizates in two solvents.
Resumo:
The thesis entitled “Synergistic solvent extraction of Thorium(IV) and Uranium(VI) with β-diketones in presence of oxo-donors” embodies the results of the investigations carried out on the extraction of thorium(IV) an uranium(VI) with heterocyclic β-diketones in the presence and absence of various macrocyclic ligands and neutral organophosphorus extractants. The objective of this work is to generate the knowledge base to achieve better selectivity between thorium(IV) and uranium(VI) by understanding the interactions of crown ethers or neutral organophosphorus extractants with metal-heterocyclic β-diketonate complexes. Para-substituted 1-phenyl-3-methyl-4-aroyl-5-pyrazolones, namely,1-phenyl-3-methyl-4-(4-fluorobenzoyl)-5-pyrazolone (HPMFBP) and 1-phenyl-3-methyl-4-(4-toluoyl)-5-pyrazolone (HPMTP) were synthesized and characterized by elemental analysis, IR and H NMR spectral data. The synthesized ligands have been utilized for the extraction of thorium(IV) and uranium(VI) from nitric acid solutions in the presence and absence of various crown ethers. Thorium(IV) and uranium(VI) complexes with HPMPP(1-Phenyl-3-methyl-4-pivaloyl-5-pyrazolone) and neutral organophosphorus extractants were synthesized and characterized by IR and P NMR spectral data to further understand the interactions of neutral organophosphorus extractants with metal-chelates. Solid complexes of thorium(IV) and uranium(VI) with para-substituted 4-aroyl-5-isoxazolones and crown ethers were isolated and characterized by various spectroscopic techniques to further clarify the nature of the extracted complexes.
Resumo:
Solid phase extraction (SPE) is a powerful technique for preconcentration/removal or separation of trace and ultra trace amounts of toxic and nutrient elements. SPE effectively simplifies the labour intensive sample preparation, increase its reliability and eliminate the clean up step by using more selective extraction procedures. The synthesis of sorbents with a simplified procedure and diminution of the risks of errors shows the interest in the areas of environmental monitoring, geochemical exploration, food, agricultural, pharmaceutical, biochemical industry and high purity metal designing, etc. There is no universal SPE method because the sample pretreatment depends strongly on the analytical demand. But there is always an increasing demand for more sensitive, selective, rapid and reliable analytical procedures. Among the various materials, chelate modified naphthalene, activated carbon and chelate functionalized highly cross linked polymers are most important. In the biological and environmental field, large numbers of samples are to be analysed within a short span of time. Hence, online flow injection methods are preferred as they allow extraction, separation, identification and quantification of many numbers of analytes. The flow injection online preconcentration flame AAS procedure developed allows the determination of as low as 0.1 µg/l of nickel in soil and cobalt in human hair samples. The developed procedure is precise and rapid and allows the analysis of 30 samples per hour with a loading time of 60 s. The online FI manifold used in the present study permits high sampling, loading rates and thus resulting in higher preconcentration/enrichment factors of -725 and 600 for cobalt and nickel respectively with a 1 min preconcentration time compared to conventional FAAS signal. These enrichment factors are far superior to hitherto developed on line preconcentration procedures for inorganics. The instrumentation adopted in the present study allows much simpler equipment and low maintenance costs compared to costlier ICP-AES or ICP-MS instruments.
Resumo:
In this article it is proved that the stationary Markov sequences generated by minification models are ergodic and uniformly mixing. These results are used to establish the optimal properties of estimators for the parameters in the model. The problem of estimating the parameters in the exponential minification model is discussed in detail.
Resumo:
We study the effect of parameter fluctuations and the resultant multiplicative noise on the synchronization of coupled chaotic systems. We introduce a new quantity, the fluctuation rate Ф as the number of perturbations occurring to the parameter in unit time. It is shown that ϕ is the most significant quantity that determines the quality of synchronization. It is found that parameter fluctuations with high fluctuation rates do not destroy synchronization, irrespective of the statistical features of the fluctuations. We also present a quasi-analytic explanation to the relation between ϕ and the error in synchrony.
Resumo:
The thesis has covered various aspects of modeling and analysis of finite mean time series with symmetric stable distributed innovations. Time series analysis based on Box and Jenkins methods are the most popular approaches where the models are linear and errors are Gaussian. We highlighted the limitations of classical time series analysis tools and explored some generalized tools and organized the approach parallel to the classical set up. In the present thesis we mainly studied the estimation and prediction of signal plus noise model. Here we assumed the signal and noise follow some models with symmetric stable innovations.We start the thesis with some motivating examples and application areas of alpha stable time series models. Classical time series analysis and corresponding theories based on finite variance models are extensively discussed in second chapter. We also surveyed the existing theories and methods correspond to infinite variance models in the same chapter. We present a linear filtering method for computing the filter weights assigned to the observation for estimating unobserved signal under general noisy environment in third chapter. Here we consider both the signal and the noise as stationary processes with infinite variance innovations. We derived semi infinite, double infinite and asymmetric signal extraction filters based on minimum dispersion criteria. Finite length filters based on Kalman-Levy filters are developed and identified the pattern of the filter weights. Simulation studies show that the proposed methods are competent enough in signal extraction for processes with infinite variance.Parameter estimation of autoregressive signals observed in a symmetric stable noise environment is discussed in fourth chapter. Here we used higher order Yule-Walker type estimation using auto-covariation function and exemplify the methods by simulation and application to Sea surface temperature data. We increased the number of Yule-Walker equations and proposed a ordinary least square estimate to the autoregressive parameters. Singularity problem of the auto-covariation matrix is addressed and derived a modified version of the Generalized Yule-Walker method using singular value decomposition.In fifth chapter of the thesis we introduced partial covariation function as a tool for stable time series analysis where covariance or partial covariance is ill defined. Asymptotic results of the partial auto-covariation is studied and its application in model identification of stable auto-regressive models are discussed. We generalize the Durbin-Levinson algorithm to include infinite variance models in terms of partial auto-covariation function and introduce a new information criteria for consistent order estimation of stable autoregressive model.In chapter six we explore the application of the techniques discussed in the previous chapter in signal processing. Frequency estimation of sinusoidal signal observed in symmetric stable noisy environment is discussed in this context. Here we introduced a parametric spectrum analysis and frequency estimate using power transfer function. Estimate of the power transfer function is obtained using the modified generalized Yule-Walker approach. Another important problem in statistical signal processing is to identify the number of sinusoidal components in an observed signal. We used a modified version of the proposed information criteria for this purpose.
Resumo:
The standard models for statistical signal extraction assume that the signal and noise are generated by linear Gaussian processes. The optimum filter weights for those models are derived using the method of minimum mean square error. In the present work we study the properties of signal extraction models under the assumption that signal/noise are generated by symmetric stable processes. The optimum filter is obtained by the method of minimum dispersion. The performance of the new filter is compared with their Gaussian counterparts by simulation.
Resumo:
Faculty of Marine Sciences,Cochin University of Science and Technology
Resumo:
Magnetic Resonance Imaging (MRI) is a multi sequence medical imaging technique in which stacks of images are acquired with different tissue contrasts. Simultaneous observation and quantitative analysis of normal brain tissues and small abnormalities from these large numbers of different sequences is a great challenge in clinical applications. Multispectral MRI analysis can simplify the job considerably by combining unlimited number of available co-registered sequences in a single suite. However, poor performance of the multispectral system with conventional image classification and segmentation methods makes it inappropriate for clinical analysis. Recent works in multispectral brain MRI analysis attempted to resolve this issue by improved feature extraction approaches, such as transform based methods, fuzzy approaches, algebraic techniques and so forth. Transform based feature extraction methods like Independent Component Analysis (ICA) and its extensions have been effectively used in recent studies to improve the performance of multispectral brain MRI analysis. However, these global transforms were found to be inefficient and inconsistent in identifying less frequently occurred features like small lesions, from large amount of MR data. The present thesis focuses on the improvement in ICA based feature extraction techniques to enhance the performance of multispectral brain MRI analysis. Methods using spectral clustering and wavelet transforms are proposed to resolve the inefficiency of ICA in identifying small abnormalities, and problems due to ICA over-completeness. Effectiveness of the new methods in brain tissue classification and segmentation is confirmed by a detailed quantitative and qualitative analysis with synthetic and clinical, normal and abnormal, data. In comparison to conventional classification techniques, proposed algorithms provide better performance in classification of normal brain tissues and significant small abnormalities.
Resumo:
Speech signals are one of the most important means of communication among the human beings. In this paper, a comparative study of two feature extraction techniques are carried out for recognizing speaker independent spoken isolated words. First one is a hybrid approach with Linear Predictive Coding (LPC) and Artificial Neural Networks (ANN) and the second method uses a combination of Wavelet Packet Decomposition (WPD) and Artificial Neural Networks. Voice signals are sampled directly from the microphone and then they are processed using these two techniques for extracting the features. Words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. Training, testing and pattern recognition are performed using Artificial Neural Networks. Back propagation method is used to train the ANN. The proposed method is implemented for 50 speakers uttering 20 isolated words each. Both the methods produce good recognition accuracy. But Wavelet Packet Decomposition is found to be more suitable for recognizing speech because of its multi-resolution characteristics and efficient time frequency localizations
Resumo:
Speech processing and consequent recognition are important areas of Digital Signal Processing since speech allows people to communicate more natu-rally and efficiently. In this work, a speech recognition system is developed for re-cognizing digits in Malayalam. For recognizing speech, features are to be ex-tracted from speech and hence feature extraction method plays an important role in speech recognition. Here, front end processing for extracting the features is per-formed using two wavelet based methods namely Discrete Wavelet Transforms (DWT) and Wavelet Packet Decomposition (WPD). Naive Bayes classifier is used for classification purpose. After classification using Naive Bayes classifier, DWT produced a recognition accuracy of 83.5% and WPD produced an accuracy of 80.7%. This paper is intended to devise a new feature extraction method which produces improvements in the recognition accuracy. So, a new method called Dis-crete Wavelet Packet Decomposition (DWPD) is introduced which utilizes the hy-brid features of both DWT and WPD. The performance of this new approach is evaluated and it produced an improved recognition accuracy of 86.2% along with Naive Bayes classifier.