8 resultados para POLYPHENYLENE SULFIDE

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical bath deposition (CBD)is one of the simplest, very convient and probably the cheapest method for thin film preparation. Photovoltaic is the cleanest and the most efficient mode of conversion of energy to electrical power. Silicon is the most popular material in this field. The present study on chemical bath deposited semiconducting copper selenide and iron sulfide thin films useful for photovoltaic applications. Semiconducting thin films prepared by chemical deposition find applications as photo detectors, solar control coatings and solar cells. Copper selenide is a p-type semiconductor that finds application in photovolitics. Several heterojunction systems such as Cu2-xSe/ZnSe (for injection electro luminescence), Cu2Se/AgInSe2 and Cu2Se/Si (for photodiodes), Cu2-xSe/CdS, Cu2-xSe/CdSe, CuxSe/InP and Cu2-xSe/Si for solar cells are reported. A maximum efficiency of 8.3% was achieved for the Cu2-xSe/Si cell, various preparation techniques are used for copper selenide like vacuum evaporation, direct reaction, electrodeposition and CBD. Instability of the as-prepared films was investigation and is accounted as mainly due to deviation from stoichiometry and the formation of iron oxide impurity. A sulphur annealing chamber was designed and fabricated for this work. These samples wee also analysed using optical absorption technique, XPS (X-ray Photoelectron Spectroscopy) and XRD.(X-Ray Diffraction).The pyrite films obtained by CBD technique showed amorphous nature and the electrical studies carried out showed the films to be of high resistive nature. Future work possible in the material of iron pyrite includes sulphur annealing of the non-stochiometric iron pyrite CBD thin films in the absence of atmospheric oxygen

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, structural, optical and electrical properties of indium sulfide are tuned by specific and controlled doping. Silver, tin, copper and chlorine were used as the doping elements. In2S3 thin films for the present study were prepared using a simple and low cost “Chemical Spray Pyrolysis (CSP)” technique. This technique is adaptable for large-area deposition of thin films in any required shape and facilitates easiness of doping and/or variation of atomic ratio. It involves spraying a solution, usually aqueous, containing soluble salts of the constituents of the desired compound onto a heated substrate. Doping process was optimized for different doping concentrations. On optimizing doping conditions, we tuned the structural, optical and electrical properties of indium sulfide thin films making them perform as an ideal buffer layer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 2,4,6-triphenylthiapyrylium ion has been obtained imprisoned inside the supercages of the tridirectional, large pore zeolites Y and beta via ship-in-a-bottle synthesis from chalcone and acetophenone in the presence of hydrogen sulfide. The resulting solids are efficient and robust photocatalysts that are able to degrade phenol and aniline in water with a higher efficiency than the P-25 TiO2 standard. Preliminary tests have shown that these encapsulated dye materials are also efficient photocatalysts for the oxidative degradation of malodorous sulfurcontaining molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dept.of Physics, Cochin University of Science and Technology

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two stage processes consisting of precursor preparation by thermal evaporation followed by chalcogenisation in the required atmosphere is found to be a feasible technique for the PV materials such as n-Beta In2S3, p-CulnSe2, p-CulnS2 and p-CuIn(Sel_xSx)2. The growth parameters such as chalcogenisation temperature and duration of chalcogenisation etc have been optimised in the present study.Single phase Beta-In2S3 thin films can be obtained by sulfurising the indium films above 300°C for 45 minutes. Low sulfurisation temperatures required prolonged annealing after the sulfurisation to obtain single phase Beta-1n2S3, which resulted in high material loss. The maximum band gap of 2.58 eV was obtained for the nearly stoichiometric Beta-In2S3 film which was sulfurised at 350°C. This wider band gap, n type Beta-In2S3 can be used as an alternative to toxic CdS as window layer in photovoltaics .The systematic study on the structural optical and electrical properties of CuInSe2 films by varying the process parameters such as the duration of selenization and the selenization temperature led to the conclusion that for the growth of single-phase CuInSe2, the optimum selenization temperature is 350°C and duration is 3 hours. The presence of some binary phases in films for shorter selenization period and lower selenization temperature may be due to the incomplete reaction and indium loss. Optical band gap energy of 1.05 eV obtained for the films under the optimum condition.In order to obtain a closer match to the solar spectrum it is desirable to increase the band gap of the CulnSe2 by a few meV . Further research works were carried out to produce graded band gap CuIn(Se,S)2 absorber films by incorporation of sulfur into CuInSe2. It was observed that when the CulnSe2 prepared by two stage process were post annealed in sulfur atmosphere, the sulfur may be occupying the interstitial positions or forming a CuInS2 phase along with CuInSe2 phase. The sulfur treatment during the selenization process OfCu11 ln9 precursors resulted in Culn (Se,S)2 thin films. A band gap of 1.38 eV was obtained for the CuIn(Se,S)2.The optimised thin films n-beta 1n2S3, p-CulnSe2 and p-Culn(Sel-xSx)2 can be used for fabrication of polycrystalline solar cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effect of chlorine doping on the opto-electronic properties of β-In2S3 thin film, deposited by spray pyrolysis technique is studied for the first time. Chlorine was incorporated in the spray solution, using HCl. Pristine sample prepared using In(NO3)3 and thiourea as the precursors showed very low photosensitivity. But upon adding optimum quantity of chlorine, the photosensitivity increased by 3 orders. X-ray analysis revealed that crystallinity was also increasing up to this optimum level of Cl concentration. It was also observed that samples with high photosensitivity were having higher band gap. The present study proved that doping with chlorine was beneficial as this could result in forming crystalline and photosensitive films of indium sulfide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SnS thin films were prepared using automated chemical spray pyrolysis (CSP) technique. Single-phase, p-type, stoichiometric, SnS films with direct band gap of 1.33 eV and having very high absorption coefficient (N105/cm) were deposited at substrate temperature of 375 °C. The role of substrate temperature in determining the optoelectronic and structural properties of SnS films was established and concentration ratios of anionic and cationic precursor solutions were optimized. n-type SnS samples were also prepared using CSP technique at the same substrate temperature of 375 °C, which facilitates sequential deposition of SnS homojunction. A comprehensive analysis of both types of films was done using x-ray diffraction, energy dispersive x-ray analysis, scanning electron microscopy, atomic force microscopy, optical absorption and electrical measurements. Deposition temperatures required for growth of other binary sulfide phases of tin such as SnS2, Sn2S3 were also determined

Relevância:

10.00% 10.00%

Publicador:

Resumo:

b-In2S3 thin filmsweredepositedonIndiumTinOxidesubstratesusingtheChemical SprayPyrolysistechnique.Metalcontactwasdepositedoverthe b-In2S3 thin filmto formahetero-structureofthetypeITO/b-In2S3/Metal.Theintensityoftwophoto- luminescenceemissionsfromthe b-In2S3 thin film,centeredat520and690nmcould be variedbytheapplicationofanexternalbiasvoltagetothishetero-structure.The emissionscouldbeswitchedonoroffdependinguponthemagnitudeoftheexternal appliedbiasvoltage.Thusthepresenceoftwoconductingstatesinthishetero-structure could beidentified.Thetemporalvariationinintensityofthephotoluminescence emissionwiththeapplicationofthebiasvoltagehasalsobeenstudied.Thecondition underwhichphotoluminescencequenchingoccurshasbeenrepresentedbyafirst order differentialequationbetweendiffusionlengthandcarrierconcentration