13 resultados para Natural antioxidants
em Cochin University of Science
Resumo:
In the present study on natural antioxidants, the focus has been kept mainly on oil seeds, especially sesame and its by-products. Sesame, which has been under cultivation in India for centuries is called the 'Queen of oil seed crops' because of the high yield of oil obtained and the nutritional qualities of the seed, oil, and meal. Though India is the largest producer of sesame in the world, research on the various health benefits of sesame has been carried out by Japanese Sesame has an important place in the foods and tradit..ional medicine of India from time immemorial. Foreseeing the potential of sesame and its byproducts as an important antioxidant source and its availability in bulk, the present study was focussed on Sesamum species. There are not many reports on the wild species of Sesamum in India, especially of the Kerala region. Hence, in the present study we also included antioxidants of Sesamurnrnalabaricumdistributed throughout the coastal region.The important characteristics of sesame are attributed to the presence of the umquc compounds lignans. Lignans arc a group of natural products of phenyl propanoid ongm, whieh are widely distributed in nature. They display important physiological functions in plants, in human nutrition and medicine, given their extensive health promotive and curative properties. Much interest has been focussed on their effectiveness as antineoplastic agents and research in this area has revealed several modes of action by which they can regulate the growth of mammalian cells. Sesame is an important source of furofuran lignans, of which sesamin and the rare oxygenated derivative sesamoIin are the most abundant. Others include sesamol and glucosides of lignans. Sesarnin and episesamin are reported to have hypocholesterolemic effect, suppressive effect on chemically induced cancer, alleviation of allergy symptoms etc. Sesamol, sesamolin and the lignan glycosides are reported to inhibit lipid peroxidation. Present investigation on sesame and its byproducts have been carried out to explore the possibility of developing a natural antioxidant extract from available resources to be used as a substitute to synthetic ones in vegetable oils and foods. Preliminary analysis showed that sesame cake, a byproduct could still be utilized as a major source of lignans. Sesame cake, which is now used only as a cattlefeed, can be better utilized in the form of a valuable antioxidant source. The present study explains the development of a feasible process for the extraction of antioxidant compounds from sesame cake. The antioxidant extract so prepared from sesame cake has been tested for vegetable oil protection and is found to be effective at low concentration. In addition, studies also include the antioxidant, radical scavenging, anticancer, mosquitocidal and pesticidal activities of extract and individual compounds.
Resumo:
Antioxidants are substances that when present at low concentrations compared to that of an oxidisable substrate significantly delays or inhibits oxidation of that substrate in food products or in living systems. Antioxidants are either endogenous to the body or derived from the diet. Several types of synthetic antioxidants like BHT, BHA, TBHQ etc. are also used in the food industry. However, findings and subsequent publicity has fostered significant consumer resistance to the use of synthetic food additives as antioxidants, colourants etc. and therefore food industry is in search of potential natural antioxidants from edible sources.The major dietary sources of antioxidant phytochemicals are cereals, legumes, fruits, vegetables, oilseeds, beverages, spices and herbs. In the present study, we have focused on rice bran and its byproducts. Rice is one of the oldest of food crops and has been a staple food in India from very ancient times. It is also the staple food for about 60% of the world's population. Rice bran is a byproduct of the rice milling industry and is a potential commercial source of a healthy edible oil viz. rice bran oil and a variety of bio-active phytochemicals.Defatted rice bran (DRB), a byproduct of rice bran oil extraction, is also a good source of insoluble dietary fiber, protein, phytic acid, inosito I, vitamin B and a variety of other phytochemicals. Though the antioxidant potential of DRB has been demonstrated, it still remained a relatively unexplored source material, which demanded further investigation especially with regard to its detailed phytochemical profile leading to practical application. The focus of the present investigation therefore has been on DRB primarily to establish its phytochemical status and feasibility of using it as a source of bio-active phytochemicals and natural antioxidants leading to value addition of DRB otherwise used as cattle feed. To gain a better understanding of the value of rice bran as a source of phytochemicals, five popular rice varieties of the region viz. PTB 50, PTB 39, PTB 38, JA Y A, and MO 10 and a wild variety (oryza nivara) that is mainly used for medicinal applications in traditional ayurvedic system were characterized along with commercial samples of rice bran. The present study also explains the feasibility of a process for the extraction, enrichment, and isolation of antioxidant compounds from DRB. The antioxidant potential of the extracts were evaluated both in bulk oils and in food relevant model emulsions, using standard in vitro models. Radical scavenging effects, indicative of possible biological effects, were also evaluated.
Resumo:
School of Industrial Fisheries, Cochin University of Science and Technology
Resumo:
In the first part of the study we probed the effectiveness of rice bran oil as a multipurpose compounding ingredient for nitrile (NBR) and chloroprene (CR) rubbers. This oil has already been successfully employed in the compounding of NR and SBR in this laboratory.In this context we thought it worthwhile to try this oil in the polar rubbers viz, NBR and CR also. The principle of like dissolves like as applicable to solvents is equally applicable while selecting a plasticiser, elastomer combination. Because of the compatibility considerations polar plasticisers are preferred for polar rubbers like NBR and CR. Although plasticisation is a physical phenomenon and no chemical reaction is involved, the chemical structure of plasticisers determines how much physical attraction there is between the rubber and the plasticiser. In this context it is interesting to note that the various fatty acids present in rice bran oil have a long paraffinic chain, characteristic of waxes, with an acid group at the end of the molecule. The paraffinic end of the molecule contributes lubricating effects and limits compatibility whereas the acid end group contributes some polarity and is also chemically reactive. Because of absorption of acid group on the surface of pigments, these acids will have active pigment wetting characteristics also. These factors justifies the role of rice bran oil as a co-activator and lubricating agent for NBR and CR. In fact in our study we successfully replaced stearic acid as co-activator and aromatic oillDOP as processing aid for CR and NBR with rice bran oil.This part of the study has got special significance in the fact that rubber industry now heavily depends on petroleum industry for process oils. The conventional process oils like aromatic, naphthenic and paraffinic oils are increasingly becoming costlier, as its resources in nature are fast depleting. Moreover aromatic process oils are reported to be carcinogenic because of the presence of higher levels of polycyclic aromatic compounds in these oils.As a result of these factors, a great amount research is going on world over for newer processing aids which are cost effective, nontoxic and performanance wise at par with the conventional ones used in the rubber industry. Trials with vegetable oils in this direction is worth trying.Antioxidants are usually added to the rubber compound to minimise ageing effects from heat, light, oxygen etc. As rice bran oil contains significant amount of tocopherols and oryzanol which are natural antioxidants, we replaced a phenolic antioxidant like styrenated phenol (SP) from the compound recipe of both the rubbers with RBO and ascertained whether this oil could function in the role of antioxidant as well.Preparation and use of epoxidised rice bran oil as plasticiser has already been reported.The crude rice bran oil having an iodine value of 92 was epoxidised in this laboratory using peracetic acid in presence of sulphuric acid as catalyst. The epoxy content of the epoxidised oil was determined volumetrically by treating a known weight of the oil with excess HCI and back titrating the residual HCI with standard alkali solution. The epoxidised oil having an epoxy content of 3.4% was tried in the compounding of NBR and CR as processing aids. And results of these investigations are also included in this chapter. In the second part of the study we tried how RBO/ERBO could perform when used as a processing aid in place of aromatic oil in the compounding of black filled NRCR blends. Elastomers cannot have all the properties required for a particular applications, so it is common practice in rubber industry to blend two elastomers to have desired property for the resulting blend.In this RBO/ERBO was tried as a processing aid for plasticisation, dispersion of fillers, and vulcanisation of black filled NR-CR blends.Aromatic oil was used as a control. The results of our study indicate that these oils could function as a processing aid and when added together with carbon black function as a cure accelerator also.PVC is compatible with nitrile rubber in all proportions, provided NBR has an acrylonitrile content of 25 to 40%. Lower or higher ACN content in NBR makes it incompatible with PVC.PVC is usually blended with NBR at high temperatures. In order to reduce torque during mixing, additional amounts of plasticisers like DOP are added. The plasticiser should be compatible both with PVC and NBR so as to get a homogeneous blend. Epoxidised soyaben oil is reported to have been used in the compounding of PVC as it can perfonn both as an efficient plasticiser and heat stabilizer.At present DOP constitute the largest consumed plasticiser in the PVC compounding. The migration of this plasticiser from food packaging materials made of PVC poses great health hazards as this is harmful to human body. In such a scenario we also thought it worthwhile to see whether DOP could be replaced by rice bran oil in the compounding of NBR-PVC blends Different blends of NBR-PVC were prepared with RBO and were vulcanized using sulphur and conventional accelerators. The various physical and mechanical properties of the vulcanisates were evaluated and compared with those prepared with DOP as the control plasticiser. Epoxidised rice bran oil was also tried as plasticiser for the preparation of NBR-PVC blends. A comparison of the processability and cure characteristics of the different blends prepared with DOP and ERBO showed that ERBO based blends have better processability and lower cure time values. However the elastographic maximum torque values are higher for the DOP based blends. Almost all of the physical properties evaluated are found to be slightly better for the DOP based blends over the ERBO based ones. However a notable feature of the ERBO based blends is the better percentage retention of elongation at break values after ageing over the DOP based blends. The results of these studies using rice bran oil and its epoxidised variety indicated that they could be used as efficient plasticisers in place of DOP and justifies their role as novel, nontoxic, and cheap plasticisers for NBR-PVC blends.
Resumo:
Diphenylamine was chemically attached to depolymerised natural rubber by photochemical reaction. The rubber-bound diphenylamine was characterised by TLC, HNMR, IR and TGA. The efficiency and permanence of the bound diphenylamine was compared with conventional amine type antioxidant in natural rubber vulcanizates. The rubber-bound diphenylamine was found to be less volatile and less extractable compared to the conventional antioxidant. The vulcanizates showed improved ageing resistance in comparison to vulcanizates containing conventional antioxidant . Also, the presence of liquid rubber-bound diphenylamine reduces the amount of plasticiser required for compounding.
Resumo:
Para-phenylenediamine (PD) was chemically attached to depolymerized natural rubber by a photochemical reaction . The rubber bound PD was characterized by TLC, 1H-NMR, IR, and TGA. The efficiency and permanence of the bound PD were compared with conventional antioxidants in NBR vulcanizates . The rubber bound PD was found to be less volatile and more resistant to water and oil extraction . The vulcanizates showed improved aging resistance in comparison to vulcanizates containing conventional antioxidants. The liquid rubber bound antioxidant reduces the amount of plasticizer required for compounding
Resumo:
ABSTRACT: Phenol was chemically attached to low molecular weight chlorinated polyisobutylene and stearic acid respectively. These phenolic antioxidants were characterised by IR, 1H NMR and TGA. The efficiency and permanence of these bound antioxidants were compared with conventional antioxidants in natural rubber vulcanisates. The vulcanisates showed comparable ageing resistance in comparison to vulcanisates containing conventional antioxidants. The presence of liquid polymer bound phenol reduce the amount of plasticiser required for compounding.
Resumo:
Paraphenylenediamine and diphenylamine were chemically attached to natural rubber during mastication . The rubber bound antioxidants were characterized by TLC, 'H-NMR, IR and TGA. The efficiency and permenance of these bound antioxidants were compared with a conventional amine type antioxidant in filled natural rubber vulcanizates . The rubber bound antioxidants were found to be less volatile and less extractable as compared to conventional antioxidants. The vulcanizates showed improved ageing resistance as compared to vulcanizates containing conventional antioxidants. This semisolid rubber bound antioxidant can reduce the amount of plasticizer required for compounding.
Resumo:
Antioxidants were attached to hydroxy-terminated liquid natural rubber by modified Friedel-Crafts alkylation reaction using anhydrous zinc chloride as catalyst. The rubber bound antioxidants were found to be less volatile and less extractable compared to conventional antioxidants. The bound antioxidants were tried both in latex compounds and dry rubber compounds. The vulcanizates showed improved ageing resistance compared to vulcanizates based on conventional antioxidants.
Resumo:
The main objectives of the present investigation were to evaluate the qualitative and quantitative distribution of natural cyanobacterial population and their ecobiological properties along the Cochin estuary and their application in aquaculture systems as a nutritional supplement due to their nutrient-rich biochemical composition and antioxidant potential. This thesis presents a detailed account of the distribution of cyanobacteria in Cochin estuary, an assessment of physico-chemical parameters and the nutrients of the study site, an evaluation of the effect of physico-chemical parameters on cyanobacterial distribution and abundance, isolation, identification and culturing of cyanobacteria, the biochemical composition an productivity of cyanobacteria, and an evaluation of the potential of the selected cyanobacteria as antioxidants against ethanol induced lipid peroxidation. The pH, salinity and nutritional requirements were optimized for low-cost production of the selected cyanobacterial strains. The present study provides an insight into the distribution, abundance, diversity and ecology of cyanobacteria of Cochin estuary. From the results, it is evident that the ecological conditions of Cochin estuary support a rich cyanobacterial growth.
Resumo:
The primary aim of this work has been to prepare efficient and cost effective polymer bound antioxidants by direct’ attachment of conventional antioxidants to a modified polymer. Due to the importance and easy availability of natural rubber in Kerala, it is proposed to make use of low molecular weight natural rubber as the polymer substrate for binding the antioxidant in most cases. The molecular weight of such low molecular weight natural rubber can be easily manipulated by varying the time of mastication, UV—irradiation etc. Further, the bound antioxidant may also get vulcanized during the vulcanization of the elastomer to which it is added, making the antioxidant non—volatile and non extractable. Several methods are proposed to be investigated for attaching the antioxidant to the low molecular weight natural rubber such as modified Friedel-Craft's alkylation reaction, binding during UV—irradiation, binding during aggressive mastication etc. The efficiency of such rubber bound antioxidants is proposed to be compared with that of conventional antioxidants in terms of volatility, extractability in solvents, ageing resistance etc. Naturally occuring antioxidants such as cardanol, are also proposed to be modified by binding them to low molecular weight natural rubber. The study is undertaken with the intention of generating a class of bound antioxidants which can be used in elastomers for aggressive and long term application.
Resumo:
Condoms are widely accepted as a contraceptive for family planning and population control. It is also accepted as the most effective barrier against sexually transmitted diseases, especially AIDS, the incurable disease. But presence of pinholes and low film strength of condoms make it unsuitable for the purpose. Quality improvement of condoms by reducing the pinhole formation and increasing the film strength is thus an essential requirement for population control as well as for preventing the spread of sexually transmitted diseases. Strict implementation of WHO specification of condoms further increases the rejection percentage. This causes higher rejection loss to condom manufacturers because the defects could be identified only at the final stage of processing. If the influence of various factors which cause these defects is known, manufacturers can take remedial measures to reduce the defectives so that rejection loss can be decreased and quality of condoms increased. In the present study, it was proposed to conduct experiments to improve the quality of condoms by reducing the pinhole rejection percentage and increasing the tensile properties, burst volume, and burst pressure. Ageing property improvement also was an important target among other parameters. Until a cure for AIDS is found, a high quality latex condom is the only effective device in the prevention of the spread of HIV, AIDS and STD's. Hence it is all the more necessary to have high quality condoms.
Resumo:
The scope of the work was to synthesis few biologically active derivatives of curcumin. The derivatives were prepared by altering the keto-enol centre of curcumin by various reagents. This particular reaction centre for preparing derivative was selected keeping in mind the controversy regarding the major site responsible for antioxidant mechanism of curcumin. Most of the mechanistic study done earlier was by varying the constituents in one or both of the phenol ring present in the curcumin. The alterations at the keto-enol moiety may throw an insight into the role of the diketo moiety towards the antioxidant mechanism. Since recently curcumin has been suggested as a chemotherapeutic agent for various ailments, we also decided to check the DNA intercalating property of the derivatives synthesised.