9 resultados para Internet security applications

em Cochin University of Science


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a performance analysis of reversible, fault tolerant VLSI implementations of carry select and hybrid decimal adders suitable for multi-digit BCD addition. The designs enable partial parallel processing of all digits that perform high-speed addition in decimal domain. When the number of digits is more than 25 the hybrid decimal adder can operate 5 times faster than conventional decimal adder using classical logic gates. The speed up factor of hybrid adder increases above 10 when the number of decimal digits is more than 25 for reversible logic implementation. Such highspeed decimal adders find applications in real time processors and internet-based applications. The implementations use only reversible conservative Fredkin gates, which make it suitable for VLSI circuits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biometrics has become important in security applications. In comparison with many other biometric features, iris recognition has very high recognition accuracy because it depends on iris which is located in a place that still stable throughout human life and the probability to find two identical iris's is close to zero. The identification system consists of several stages including segmentation stage which is the most serious and critical one. The current segmentation methods still have limitation in localizing the iris due to circular shape consideration of the pupil. In this research, Daugman method is done to investigate the segmentation techniques. Eyelid detection is another step that has been included in this study as a part of segmentation stage to localize the iris accurately and remove unwanted area that might be included. The obtained iris region is encoded using haar wavelets to construct the iris code, which contains the most discriminating feature in the iris pattern. Hamming distance is used for comparison of iris templates in the recognition stage. The dataset which is used for the study is UBIRIS database. A comparative study of different edge detector operator is performed. It is observed that canny operator is best suited to extract most of the edges to generate the iris code for comparison. Recognition rate of 89% and rejection rate of 95% is achieved

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this computerized, globalised and internet world our computer collects various types of information’s about every human being and stores them in files secreted deep on its hard drive. Files like cache, browser history and other temporary Internet files can be used to store sensitive information like logins and passwords, names addresses, and even credit card numbers. Now, a hacker can get at this information by wrong means and share with someone else or can install some nasty software on your computer that will extract your sensitive and secret information. Identity Theft posses a very serious problem to everyone today. If you have a driver’s license, a bank account, a computer, ration card number, PAN card number, ATM card or simply a social security number you are more than at risk, you are a target. Whether you are new to the idea of ID Theft, or you have some unanswered questions, we’ve compiled a quick refresher list below that should bring you up to speed. Identity theft is a term used to refer to fraud that involves pretending to be someone else in order to steal money or get other benefits. Identity theft is a serious crime, which is increasing at tremendous rate all over the world after the Internet evolution. There is widespread agreement that identity theft causes financial damage to consumers, lending institutions, retail establishments, and the economy as a whole. Surprisingly, there is little good public information available about the scope of the crime and the actual damages it inflicts. Accounts of identity theft in recent mass media and in film or literature have centered on the exploits of 'hackers' - variously lauded or reviled - who are depicted as cleverly subverting corporate firewalls or other data protection defenses to gain unauthorized access to credit card details, personnel records and other information. Reality is more complicated, with electronic identity fraud taking a range of forms. The impact of those forms is not necessarily quantifiable as a financial loss; it can involve intangible damage to reputation, time spent dealing with disinformation and exclusion from particular services because a stolen name has been used improperly. Overall we can consider electronic networks as an enabler for identity theft, with the thief for example gaining information online for action offline and the basis for theft or other injury online. As Fisher pointed out "These new forms of hightech identity and securities fraud pose serious risks to investors and brokerage firms across the globe," I am a victim of identity theft. Being a victim of identity theft I felt the need for creating an awareness among the computer and internet users particularly youngsters in India. Nearly 70 per cent of Indian‘s population are living in villages. Government of India already started providing computer and internet facilities even to the remote villages through various rural development and rural upliftment programmes. Highly educated people, established companies, world famous financial institutions are becoming victim of identity theft. The question here is how vulnerable the illiterate and innocent rural people are if they suddenly exposed to a new device through which some one can extract and exploit their personal data without their knowledge? In this research work an attempt has been made to bring out the real problems associated with Identity theft in developed countries from an economist point of view.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Indian economy is witnessing stellar growth over the last few years. There have been rapid developments in infrastructural and business front during the growth period.Internet adoption among Indians has been increasing over the last one decade.Indian banks have also risen to the occasion by offering new channels of delivery to their customers.Internet banking is one such new channel which has become available to Indian customers.Customer acceptance for internet banking has been good so far.In this study the researcher tried to conduct a qualitative and quantitative investigation of internet banking customer acceptance among Indians. The researcher tried to identify important factors that affect customer's behavioral intention for internet banking .The researcher also proposes a research model which has extended from Technology Acceptance Model for predicting internet banking acceptance.The findings of the study would be useful for Indian banks in planning and upgrading their internet banking service.Banks could increase internet banking adoption by making their customer awareness about the usefulness of the service.It is seen that from the study that the variable perceived usefulness has a positive influence on internet banking use,therefore internet banking acceptance would increase when customers find it more usefulness.Banks should plan their marketing campaigns taking into consideration this factor.Proper marketing communications which would increase consumer awareness would result in better acceptance of internet banking.The variable perceived ease of use had a positive influence on internet banking use.That means customers would increase internet banking usage when they find it easier to use.Banks should therefore try to develop their internet banking site and interface easier to use.Banks could also consider providing practical training sessions for customers at their branches on usage of internet banking interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Internet today has become a vital part of day to day life, owing to the revolutionary changes it has brought about in various fields. Dependence on the Internet as an information highway and knowledge bank is exponentially increasing so that a going back is beyond imagination. Transfer of critical information is also being carried out through the Internet. This widespread use of the Internet coupled with the tremendous growth in e-commerce and m-commerce has created a vital need for infonnation security.Internet has also become an active field of crackers and intruders. The whole development in this area can become null and void if fool-proof security of the data is not ensured without a chance of being adulterated. It is, hence a challenge before the professional community to develop systems to ensure security of the data sent through the Internet.Stream ciphers, hash functions and message authentication codes play vital roles in providing security services like confidentiality, integrity and authentication of the data sent through the Internet. There are several ·such popular and dependable techniques, which have been in use widely, for quite a long time. This long term exposure makes them vulnerable to successful or near successful attempts for attacks. Hence it is the need of the hour to develop new algorithms with better security.Hence studies were conducted on various types of algorithms being used in this area. Focus was given to identify the properties imparting security at this stage. By making use of a perception derived from these studies, new algorithms were designed. Performances of these algorithms were then studied followed by necessary modifications to yield an improved system consisting of a new stream cipher algorithm MAJE4, a new hash code JERIM- 320 and a new message authentication code MACJER-320. Detailed analysis and comparison with the existing popular schemes were also carried out to establish the security levels.The Secure Socket Layer (SSL) I Transport Layer Security (TLS) protocol is one of the most widely used security protocols in Internet. The cryptographic algorithms RC4 and HMAC have been in use for achieving security services like confidentiality and authentication in the SSL I TLS. But recent attacks on RC4 and HMAC have raised questions about the reliability of these algorithms. Hence MAJE4 and MACJER-320 have been proposed as substitutes for them. Detailed studies on the performance of these new algorithms were carried out; it has been observed that they are dependable alternatives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern computer systems are plagued with stability and security problems: applications lose data, web servers are hacked, and systems crash under heavy load. Many of these problems or anomalies arise from rare program behavior caused by attacks or errors. A substantial percentage of the web-based attacks are due to buffer overflows. Many methods have been devised to detect and prevent anomalous situations that arise from buffer overflows. The current state-of-art of anomaly detection systems is relatively primitive and mainly depend on static code checking to take care of buffer overflow attacks. For protection, Stack Guards and I-leap Guards are also used in wide varieties.This dissertation proposes an anomaly detection system, based on frequencies of system calls in the system call trace. System call traces represented as frequency sequences are profiled using sequence sets. A sequence set is identified by the starting sequence and frequencies of specific system calls. The deviations of the current input sequence from the corresponding normal profile in the frequency pattern of system calls is computed and expressed as an anomaly score. A simple Bayesian model is used for an accurate detection.Experimental results are reported which show that frequency of system calls represented using sequence sets, captures the normal behavior of programs under normal conditions of usage. This captured behavior allows the system to detect anomalies with a low rate of false positives. Data are presented which show that Bayesian Network on frequency variations responds effectively to induced buffer overflows. It can also help administrators to detect deviations in program flow introduced due to errors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

n the recent years protection of information in digital form is becoming more important. Image and video encryption has applications in various fields including Internet communications, multimedia systems, medical imaging, Tele-medicine and military communications. During storage as well as in transmission, the multimedia information is being exposed to unauthorized entities unless otherwise adequate security measures are built around the information system. There are many kinds of security threats during the transmission of vital classified information through insecure communication channels. Various encryption schemes are available today to deal with information security issues. Data encryption is widely used to protect sensitive data against the security threat in the form of “attack on confidentiality”. Secure transmission of information through insecure communication channels also requires encryption at the sending side and decryption at the receiving side. Encryption of large text message and image takes time before they can be transmitted, causing considerable delay in successive transmission of information in real-time. In order to minimize the latency, efficient encryption algorithms are needed. An encryption procedure with adequate security and high throughput is sought in multimedia encryption applications. Traditional symmetric key block ciphers like Data Encryption Standard (DES), Advanced Encryption Standard (AES) and Escrowed Encryption Standard (EES) are not efficient when the data size is large. With the availability of fast computing tools and communication networks at relatively lower costs today, these encryption standards appear to be not as fast as one would like. High throughput encryption and decryption are becoming increasingly important in the area of high-speed networking. Fast encryption algorithms are needed in these days for high-speed secure communication of multimedia data. It has been shown that public key algorithms are not a substitute for symmetric-key algorithms. Public key algorithms are slow, whereas symmetric key algorithms generally run much faster. Also, public key systems are vulnerable to chosen plaintext attack. In this research work, a fast symmetric key encryption scheme, entitled “Matrix Array Symmetric Key (MASK) encryption” based on matrix and array manipulations has been conceived and developed. Fast conversion has been achieved with the use of matrix table look-up substitution, array based transposition and circular shift operations that are performed in the algorithm. MASK encryption is a new concept in symmetric key cryptography. It employs matrix and array manipulation technique using secret information and data values. It is a block cipher operated on plain text message (or image) blocks of 128 bits using a secret key of size 128 bits producing cipher text message (or cipher image) blocks of the same size. This cipher has two advantages over traditional ciphers. First, the encryption and decryption procedures are much simpler, and consequently, much faster. Second, the key avalanche effect produced in the ciphertext output is better than that of AES.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The focus of this work is to provide authentication and confidentiality of messages in a swift and cost effective manner to suit the fast growing Internet applications. A nested hash function with lower computational and storage demands is designed with a view to providing authentication as also to encrypt the message as well as the hash code using a fast stream cipher MAJE4 with a variable key size of 128-bit or 256-bit for achieving confidentiality. Both nested Hash function and MAJE4 stream cipher algorithm use primitive computational operators commonly found in microprocessors; this makes the method simple and fast to implement both in hardware and software. Since the memory requirement is less, it can be used for handheld devices for security purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes JERIM-320, a new 320-bit hash function used for ensuring message integrity and details a comparison with popular hash functions of similar design. JERIM-320 and FORK -256 operate on four parallel lines of message processing while RIPEMD-320 operates on two parallel lines. Popular hash functions like MD5 and SHA-1 use serial successive iteration for designing compression functions and hence are less secure. The parallel branches help JERIM-320 to achieve higher level of security using multiple iterations and processing on the message blocks. The focus of this work is to prove the ability of JERIM 320 in ensuring the integrity of messages to a higher degree to suit the fast growing internet applications