8 resultados para Glutamine synthetase

em Cochin University of Science


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study is about the Pseudomonas sp. BTMS-51 isolated from the marine sediments of Cochin Coast. In the present study, it is concluded that marine bacteria are ideal candidates for immobilization using either Ca-alginate entrapment or physical adsorption on to synthetic inert supports and the process of immobilization does not negatively influence them. Thus, Ca-alginate entrapment of the bacteria was found to be well suited for reuse of the biomass and extended operational stability during continuous operation. Adherence of the bacterium to inertsupports was observed to be strong and it imparted minimal stress on the immobilized bacterium and allowed detachment and relocation on the supports which enabled the formation of a dynamic equilibrium maintaining a stable cell loading. This is particularly desirable in the industry for extended operational stability and maintenance of consistently higher outputs. Marine Pseudomonas sp. BTMS-51 is ideal for industrial production of extra cellular L-glutaminase and immobilization on to synthetic inert support such as polyurethane foam could be an efficient technique, employing packed bed reactor for continuous production of the enzyme. Temperature and glutamine concentration had significant effects on enzyme production by cells immobilized on polyurethane foam (PUF).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L-glutaminases (L—glutamine amidohydrolase EC.3.5.l.2) is proposed as a prospective candidate for enzyme therapy cnf cancer and also as zui important additive during enzymatic digestion of shoyu koji since it could enhance glutamate content of soysauce. Commercial production of glutaminase could make possible its wide application in these areas, which would demand availability of potential sources and suitable fermentation techniques. The ‘present investigation highlighted marine environment as a potential source of efficient glutaminase producing bacteria mainly species of pseudomonas, aeromonas ,vibrio,alcaligenes, acinetobacter bacillus and planococci.Among them pseudomonas fluorescens ACMR 267 and v.cholerae ACMR 347 were chosen as the ideal strains for glutaminase production.Extracellular glutaminase fraction from all strains were in higher titres than intracellular enzymes during growth in mineral media, nutrient broth and nutrient broth added with glutamine.Glutaminase from all strains were purified employing (NH4)2SO4 fractionation followed tnr dialysis and ion exchange chromatography. The purified glutaminase from all strains were observed to be active and stable over a wide range of gfii and temperature.Optimization studies cflf environmental variables that normally influence time yiehi of glutaminase indicated that the optimal requirements of these bacteria for maximal glutaminase production remained stable irrespective of the medium, they are provided with for enzyme production. However, solid state fermentation technique was observed to be the most suitable process for the production of Glutaminase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extracellular L-glutaminase production by Beau6eria sp., isolated from marine sediment, was observed during solid state fermentation using polystyrene as an inert support. Maximal enzyme production (49.89 U:ml) occurred at pH 9.0, 27°C, in a seawater based medium supplemented with L-glutamine (0.25% w:v) as substrate and D-glucose (0.5% w:v) as additional carbon source, after 96 h of incubation. Enzyme production was growth associated. Results indicate scope for production of salt tolerant L-glutaminase using this marine fungus

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Process parameters influencing e-glutaminase production by marine Vibrio costicola in solid state fermentation (SSF) using polystyrene as an inert support were optimised. Maximal enzyme yield (157 U/g dry substrate) was obtained at 2% (w/w) t:glutamine, 35°C and pH 7.0 after 24 h. Maltose and potassium dihydrogen phosphate at 1% (w/w) concentration enhanced enzyme yield by 23 and 18%, respectively, while nitrogen sources had an inhibitory effect. Leachate with high specific activity for glutaminase (4.2 U/mg protein) and low viscosity (0-966 Ns/m 2) was recovered from the polystyrene SSF system

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polystyrene beads, impregnated with mineral salts/glutamine medium as inert support, were used to produce L-glutaminase from Vibrio costicola by solid-state fermentation. Maximum enzyme yield, 88 U/g substrate, was after 36 h. Glucose at 10 g/kg enhanced the enzyme yield by 66%. The support system allowed glutaminase to be recovered with higher specific activity and lower viscosity than when a wheat-bran system was used

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four species of bacteria which included Pseudomonas fluorescens, Vibrio cho!erae and Vibrio costicola were observed to produce glutaminase both as extracellular and intracellular fractions. Comparatively both the fractions were higher in mineral media supplemented with 1% glutamine than in nutrient broth added with or without glutamine. Extracellular glutaminase production was about 2.6-6.8 times greater than the intracellular production by all the tested strains

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L-Glutamine amidohydrolase (L-glutaminase, EC 3.5.1.2) is a therapeutically and industrially important enzyme. Because it is a potent antileukemic agent and a flavor-enhancing agent used in the food industry, many researchers have focused their attention on L-glutaminase. In this article, we report the continuous production of extracellular L-glutaminase by the marine fungus Beauveria bassiana BTMF S-10 in a packed-bed reactor. Parameters influencing bead production and performance under batch mode were optimized in the order-support (Na-alginate) concentration, concentration of CaCl2 for bead preparation, curing time of beads, spore inoculum concentration, activation time, initial pH of enzyme production medium, temperature of incubation, and retention time. Parameters optimized under batch mode for L-glutaminase production were incorporated into the continuous production studies. Beads with 12 × 108 spores/g of beads were activated in a solution of 1% glutamine in seawater for 15 h, and the activated beads were packed into a packed-bed reactor. Enzyme production medium (pH 9.0) was pumped through the bed, and the effluent was collected from the top of the column. The effect of flow rate of the medium, substrate concentration, aeration, and bed height on continuous production of L-glutaminase was studied. Production was monitored for 5 h in each case, and the volumetric productivity was calculated. Under the optimized conditions for continuous production, the reactor gave a volumetric productivity of 4.048 U/(mL·h), which indicates that continuous production of the enzyme by Ca-alginate-immobilizedspores is well suited for B. bassiana and results in a higher yield of enzyme within a shorter time. The results indicate the scope of utilizing immobilized B. bassiana for continuous commercial production of L-glutaminase

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L - Glutaminase, a therapeutically and industrially important enzyme, was produced from marine Vibrio costicola by a novel solid state fermentation process using polystyrene beads as inert support. The new fermentation system offered several advantages over the conventional systems, such as the yield of leachate with minimum viscosity and high specific activity for the target product besides facilitating the easy estimation of biomass. The enzyme thus produced was purified and characterised. It was active at physiological pH, showed high substrate specificity towards L - glutamine and had a Km value of 7.4 x 10-2 M. It also exhibited high salt and temperature tolerance indicating good scope for its industrial and therapeutic applications