60 resultados para Fermentation parameters
em Cochin University of Science
Resumo:
The present study aimed at the utlisation of microbial organisms for the
production of good quality chitin and chitosan. The three strains used for the
study were Lactobacillus plantarum, Lactobacililus brevis and Bacillus subtilis.
These strains were selected on the basis of their acid producing ability to reduce
the pH of the fermenting substrates to prevent spoilage and thus caused
demineralisation of the shell. Besides, the proteolytic enzymes in these strains
acted on proteinaceous covering of shrimp and thus caused deprotenisation of
shrimp shell waste. Thus the two processes involved in chitin production can be
affected to certain extent using bacterial fermentation of shrimp shell.Optimization parameters like fermentation period, quantity of inoculum,
type of sugar, concentration of sugar etc. for fermentation with three different
strains were studied. For these, parameters like pH, Total titrable acidity (TTA),
changes in sugar concentration, changes in microbial count, sensory changes
etc. were studied.Fermentation study with Lactobacillus plantarum was continued with 20%
w/v jaggery broth for 15 days. The inoculum prepared yislded a cell
concentration of approximately 108 CFU/ml. In the present study, lactic acid and
dilute hydrochloric acid were used for initial pH adjustment because; without
adjusting the initial pH, it took more than 5 hours for the lactic acid bacteria to
convert glucose to lactic acid and during this delay spoilage occurred due to
putrefying enzymes active at neutral or higher pH. During the fermentation study,
pH first decreased in correspondence with increase in TTA values. This showed
a clear indication of acid production by the strain. This trend continued till their
proteolytic activity showed an increasing trend. When the available sugar source
started depleting, proteolytic activity also decreased and pH increased. This was
clearly reflected in the sensory evaluation results. Lactic acid treated samples
showed greater extent of demineralization and deprotenisation at the end of
fermentation study than hydrochloric acid treated samples. It can be due to the
effect of strong hydrochloric acid on the initial microbial count, which directly
affects the fermentation process. At the end of fermentation, about 76.5% of ash was removed in lactic acid treated samples and 71.8% in hydrochloric acid
treated samples; 72.8% of proteins in lactic acid treated samples and 70.6% in
hydrochloric acid treated samples.The residual protein and ash in the fermented residue were reduced to
permissible limit by treatment with 0.8N HCI and 1M NaOH. Characteristics of
chitin like chitin content, ash content, protein content, % of N- acetylation etc.
were studied. Quality characteristics like viscosity, degree of deacetylation and
molecular weight of chitosan prepared were also compared. The chitosan
samples prepared from lactic acid treated showed high viscosity than HCI treated
samples. But degree of deacetylation is more in HCI treated samples than lactic
acid treated ones. Characteristics of protein liquor obtained like its biogenic
composition, amino acid composition, total volatile base nitrogen, alpha amino
nitrogen etc. also were studied to find out its suitability as animal feed
supplement.Optimization of fermentation parameters for Lactobacillus brevis
fermentation study was also conducted and parameters were standardized. Then
detailed fermentation study was done in 20%wlv jaggery broth for 17 days. Also
the effect of two different acid treatments (mild HCI and lactic acid) used for initial
pH adjustment on chitin production were also studied. In this study also trend of
changes in pH. changes in sugar concentration ,microbial count changes were
similar to Lactobacillus plantarum studies. At the end of fermentation, residual
protein in the samples were only 32.48% in HCI treated samples and 31.85% in
lactic acid treated samples. The residual ash content was about 33.68% in HCI
treated ones and 32.52% in lactic acid treated ones. The fermented residue was
converted to chitin with good characteristics by treatment with 1.2MNaOH and
1NHCI.Characteristics of chitin samples prepared were studied and extent of Nacetylation
was about 84% in HCI treated chitin and 85%in lactic acid treated
ones assessed from FTIR spectrum. Chitosan was prepared from these samples
by usual chemical method and its extent of solubility, degree of deacetylation,
viscosity and molecular weight etc were studied. The values of viscosity and
molecular weight of the samples prepared were comparatively less than the
chitosan prepared by Lactobacillus plantarum fermentation. Characteristics of protein liquor obtained were analyzed to determine its quality and is suitability as
animal feed supplement.Another strain used for the study was Bacillus subtilis and fermentation
was carried out in 20%w/v jaggery broth for 15 days. It was found that Bacillus
subtilis was more efficient than other Lactobacillus species for deprotenisation
and demineralization. This was mainly due to the difference in the proteolytic
nature of the strains. About 84% of protein and 72% of ash were removed at the
end of fermentation. Considering the statistical significance (P
Resumo:
A chitinolytic fungus, Beau6eria bassiana was isolated from marine sediment and significant process parameters influencing chitinase production in solid state fermentation using wheat bran were optimised. The organism was strongly alkalophilic and produced maximum chitinase at pH 9·20. The NaCl and colloidal chitin requirements varied with the type of moistening medium used. Vegetative (mycelial) inoculum was more suitable than conidial inoculum for obtaining maximal enzyme yield. The addition of phosphate and yeast extract resulted in enhancement of chitinase yield. After optimisation, the maximum enzyme yield was 246·6 units g 1 initial dry substrate (U gIDS 1). This is the first report of the production of chitinase from a marine fungus.
Resumo:
Process parameters influencing e-glutaminase production by marine Vibrio costicola in solid state fermentation (SSF) using polystyrene as an inert support were optimised. Maximal enzyme yield (157 U/g dry substrate) was obtained at 2% (w/w) t:glutamine, 35°C and pH 7.0 after 24 h. Maltose and potassium dihydrogen phosphate at 1% (w/w) concentration enhanced enzyme yield by 23 and 18%, respectively, while nitrogen sources had an inhibitory effect. Leachate with high specific activity for glutaminase (4.2 U/mg protein) and low viscosity (0-966 Ns/m 2) was recovered from the polystyrene SSF system
Resumo:
This work envisages the fermentation of prawn shell waste into a more nutritious product with simpler components for application as a feed ingredient in aquaculture. This product would be a rich source of protein along with chitin, minerals, vitamins and N-acetyl glucosamine. A brief description of the various processing (chemical and bioprocess) methods employed for chitin, chitosan and single sell protein preparations from shell waste. It deals with the isolation of micro flora associated with prawn shell degradation. It describes the methods adopted for fermentation of prawn shell degradation and fermentation of prawn shell waste with the selected highly chitinoclastic strains. The comparison of SSF and SmF for each selected strain in terms of enrichment of protein, lipid and carbohydrate in the fermented product was done. Detailed analysis of product quality is discussed. The feed for mulation and feeding experiment explained in detail. Statistical analysis of various biogrowth parameters was done with Duncan’s multiple range test. Very briefly explains 28 days of feeding experiment. A method for the complete utilization of shell waste explains with the help of experiments.
Resumo:
This thesis presents a detailed account of a cost - effective approach towards enhanced production of alkaline protease at profitable levels using different fermentation designs employing cheap agro-industrial residues. It involves the optimisation of process parameters for the production of a thermostable alkaline protease by Vibrio sp. V26 under solid state, submerged and biphasic fermentations, production of the enzyme using cell immobilisation technology and the application of the crude enzyme on the deproteinisation of crustacean waste.The present investigation suggests an economic move towards Improved production of alkaline protease at gainful altitudes employing different fermentation designs utilising inexpensive agro-industrial residues. Moreover, the use of agro-industrial and other solid waste substrates for fermentation helps to provide a substitute in conserving the already dwindling global energy resources. Another alternative for accomplishing economically feasible production is by the use of immobilisation technique. This method avoids the wasteful expense of continually growing microorganisms. The high protease producing potential of the organism under study ascertains their exploitation in the utilisation and management of wastes. However, strain improvement studies for the production of high yielding variants using mutagens or by gene transfer are required before recommending them to Industries.Industries, all over the world, have made several attempts to exploit the microbial diversity of this planet. For sustainable development, it is essential to discover, develop and defend this natural prosperity. The Industrial development of any country is critically dependent on the intellectual and financial investment in this area. The need of the hour is to harness the beneficial uses of microbes for maximum utilisation of natural resources and technological yields. Owing to the multitude of applications in a variety of industrial sectors, there has always been an increasing demand for novel producers and resources of alkaline proteases as well as for innovative methods of production at a commercial altitude. This investigation forms a humble endeavour towards this perspective and bequeaths hope and inspiration for inventions to follow.
Resumo:
Prawn waste, a chitinous solid waste of the shell®sh processing industry, was used as a substrate for chitinase production by the marine fungus Beauveria bassiana BTMF S10, in a solid state fermentation (SSF) culture. The process parameters in¯uencing SSF were optimized. A maximum chitinase yield of 248.0 units/g initial dry substrate (U/gIDS) was obtained in a medium containing a 5:1 ratio (w/v) of prawn waste/sea water, 1% (w/w) NaCl, 2.5% (w/w) KH2PO4, 425±600 lm substrate particle size at 27 °C, initial pH 9.5, and after 5 days of incubation. The presence of yeast extract reduced chitinase yield. The results indicate scope for the utilization of shell®sh processing (prawn) waste for the industrial production of chitinase by using solid state fermentation.
Resumo:
Engyodontium album isolated from marine sediment produced protease, which was active at pH 11. Process parameters influencing the production of alkaline protease by marine E. album was optimized. Particle size of <425 mm, 60% initial moisture content and incubation at 25 8C for 120 h were optimal for protease production under solid state fermentation (SSF) using wheat bran. The organism has two optimal pH (5 and 10) for maximal enzyme production. Sucrose as carbon source, ammonium hydrogen carbonate as additional inorganic nitrogen source and amino acid leucine enhanced enzyme production during SSF. The protease was purified and partially characterized. A 16-fold purified enzyme was obtained after ammonium sulphate precipitation and ion-exchange chromatography. Molecular weight of the purified enzyme protein was recorded approximately 38 kDa by SDS-PAGE. The enzyme showed maximum activity at pH 11 and 60 8C. Activity at high temperature and high alkaline pH suggests suitability of the enzyme for its application in detergent industry
Resumo:
The study revealed stress and localized impact of industrial waste on the biota, predominance of stress tolerant species and low diversity in the vicinity of the effluent discharge point. These studies on impact of environmental parameters on the distribution of macrobenthos thus indicate the quantum of endurance warranted by the infauna to tide over the wide range of environmental stress. Low diversity and lower number of benthic fauna near discharge site can be attributed to the stress caused by cumulative toxic effects of effluents. The results of the physico-chemical parameters highlight the effects of pollution. The results of the study indicated the changes due to the large-scale movements of the estuarine water under the influence of tide, monsoon and land runoff coupled with its heterogenous nature owing to the effluent discharge from the industries
Resumo:
The role of thyroid hormones in DNA synthesis and in the activity of Thymidille kinase (TK), a key regulatory enzyme of DNA synthesis was studied in proliferating hepatocytes in vivo. Liver regeneration after partial hepatectomy was used as a model for controlled cell division in rats having different thyroid status - euthyroid, hypothyroid and 3,3',5'-triiodo-L-thyronine (T))-heated hypothyroid. Partial hepatectomy caused a significant elevation of DNA synthesis (p<0.01) in all the three groups compared to their sham-operated counterparts. Hypothyroid liepatectomised animals showed significantly lower (p<0.01) level of DNA synthesis than euthyroid hepatectomised animals. A single subcutaneous close of 1'3 to hypothyroid shamoperated animals resulted in a significant increase (p<0.01) of DNA synthesis in the intact liver. 17tis was comparable to the level of DNA synthesis occurring in regenerating liver of euthyroid animals. In hypothyroid hepatectomised animals, "1'3 showed an additive effect on l)NA synthesis and this group exhibited maximum level of DNA synthesis (p<0.0I ). Studies of the kinetic parameters of TK show that the Michelis-Menten constant, (K111) of TK for thymidine was altered by the thyroid status. K11 increased significantly (p<0.01) in untreated hypothyroid animals when compared to the euthyroid rats. '13 treatment of hypothyroid animals reversed this effect and this group showed the lowest value for K111 (p<0.01). Thus our results indicate that thyroid hormones can influence DNA synthesis during liver regeneration and they may regulate the activity of enzymes such as 17rymidine kinase which are important for DNA synthesis and hence cell division.
Effect Insulin on DNA Synthesis and Kinetic Parameters of Thymidine Kinase During Liver Regenaration
Resumo:
The effect of insulin on cell proliferation in vivo has been studied in hepatectomised streptozotocin- diabetic rats. The extent of cell proliferation in sham and hepatectomized- control, diabetic and insulin treated rats were monitored by determining DNA content and [3H]thymidine incorporation into DNA. The kinetic parameters of thymidine kinase a regulatory enzyme for DNA synthesis was also studied in these groups. The rate of DNA synthesis in liver of streptozotocin -diabetic rats was significantly higher 24 hrs post-hepatectomy compared to control and insulin treated diabetic groups. Kinetic studies of thymidine kinase revealed that there was no change in the Michaelis -Menten constant (Km) whereas maximum velocity (Vmax) was elevated in the diabetic hepatectomized groups compared to control and insulin treated hepatectomized groups. Thus our study elucidates the role of insulin in thymidine kinase activity and DNA synthesis.
Resumo:
In this paper, we study the domination number, the global dom ination number, the cographic domination number, the global co graphic domination number and the independent domination number of all the graph products which are non-complete extended p-sums (NEPS) of two graphs.
Resumo:
The objective of the present study is to understand the spatial and temporal variability of sea surface temperature(SST), precipitable water, zonal and meridional components of wind stress over the tropical Indian Ocean to understand the different scales of variability of these features of Indian Ocean. Empirical Orthogonal Function (EOF) and wavelet analysis techniques are utilized to understand the standing oscillations and multi scale oscillations respectively. The study has been carried out over Indian Ocean and South Indian Ocean. For the present study, NCEP/NCAR(National Center for Environmental Prediction National Center for Atmospheric Research) reanalyzed daily fields of sea surface temperature, zonal and meridional surface wind components and precipitable water amount during 1960-1998 are used. The principle of EOF analysis and the methodology used for the analysis of spatial and temporal variance modes.
Resumo:
The main objective of the study was primarily to determine the effect of hydrographical parameters especially nutrients which were supplied externally to the seawater while culturing the diatom Chaetoceros calcitrans, under laboratory conditions, and to determine its optimum concentration for ideal growth of the culture, in such a condition of increased rate of pollution due to the industrialization and effluents. Also an attempt was made to study the possible correlation of diatom abundance in the South west Coast of India with the landings of the pelagic fishery resources, especially sardine, mackerel and anchovy, since these fishes are largely diatom feeders. Positive correlation was found between the diatoms and pelagic fish landings of Thalassery and Vizhinjam area while at Cochin there was less significant correlation between the two variables
Resumo:
The effect of various processing parameters, such as nip gap, friction ratio and roll temperature, on the tensile properties of short Kevlar aramid fibre-thermoplastic polyurethane composite has been investigated and the tensile and tear fracture surfaces have been characterised using a scanning electron microscope. A nip gap of 0.45 mm, a friction ratio of 1.15 and a roll temperature of 62°C was found to give optimum mechanical properties. Scanning electron microscopy study revealed a higher extent of fibre orientation in the milling direction in the above condition.
Resumo:
The present work is an attempt to probe the elastic properties in some dielectric ceramics, by using ultrasonic pulse echo overlap technique. The base Ba6-xSm8+2xTi18O54 and Ca5Nb2TiO12 are very important dielectrics ceramics used for microwave communication as well as for substrate materials. Ultrasonic is one of the most widely used and powerful techniques to measure elastic properties of solids. The ultrasonic technique is nondestructive in nature and the measurements are relatively straightforward to perform. One unique advantantage of the ultrasonic technique is that both static and dynamic properties can be measured simultaneously. The velocity and attenuation coefficients of the ultrasonic waves propagating through a medium are related to the microscopic structure of the material and they provide valuable information about the structural changes in the system. Among the various ultrasonic techniques, the pulse echo overlap method is the most accurate and precise one. In the present case the decreased elastic properties of Cas-XMg,Nb2TiO12 and Cas-,ZnNb2TiO12 ceramics can be attributed to their mixture phases beyond x = 1. Moreover, the abrupt change in elastic properties observed for x >1 can also be correlated to the structural transformation of the materials from their phase pure form to mixture phases for higher extent of substitution of the concerned material . Ca4(ANb2Ti)012 (A = Mg, Zn) is the strongest compound with the maximum values for elastic properties . This could be due to the possible substitution of Mg/Zn ions with lesser radius [25] than Ca2+ in perovskite B-site of Ca(Cali4Nb2i4Tili4) O3 material to contribute more ordering and symmetry to the system [20]. All other compositions (x > 1) contain mixed-phases and for such mixed-phase samples, the mechanical properties are difficult to explain.