5 resultados para Decomposition of Ranked Models

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Department of Applied Chemistry, Cochin University of Science and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study some dynamic generalized information measures between a true distribution and an observed (weighted) distribution, useful in life length studies. Further, some bounds and inequalities related to these measures are also studied

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the residual Kullback–Leibler discrimination information measure is extended to conditionally specified models. The extension is used to characterize some bivariate distributions. These distributions are also characterized in terms of proportional hazard rate models and weighted distributions. Moreover, we also obtain some bounds for this dynamic discrimination function by using the likelihood ratio order and some preceding results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, reciprocal subtangent has been used as a useful tool to describe the behaviour of a density curve. Motivated by this, in the present article we extend the concept to the weighted models. Characterization results are proved for models viz. gamma, Rayleigh, equilibrium, residual lifetime, and proportional hazards. An identity under weighted distribution is also obtained when the reciprocal subtangent takes the form of a general class of distributions. Finally, an extension of reciprocal subtangent for the weighted models in the bivariate and multivariate cases are introduced and proved some useful results

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we study some relevant information divergence measures viz. Renyi divergence and Kerridge’s inaccuracy measures. These measures are extended to conditionally specifiedmodels and they are used to characterize some bivariate distributions using the concepts of weighted and proportional hazard rate models. Moreover, some bounds are obtained for these measures using the likelihood ratio order