10 resultados para Data envelopment analysis (DEA).
em Cochin University of Science
Resumo:
This thesis Entitled Journal productivity in fishery science an informetric analysis.The analyses and formulating results of the study, the format of the thesis was determined. The thesis is divided into different chapters mentioned below. Chapter 1 gives an overview on the topic of research. Introduction gives the relevance of topic, define the problem, objectives of the study, hypothesis, methods of data collection, analysis and layout of the thesis. Chapter 2 provides a detailed account of the subject Fishery science and its development. A comprehensive outline is given along with definition, scope, classification, development and sources of information.Method of study used in this research and its literature review form the content of this chapter. Chapter 4 Details of the method adopted for collecting samples for the study, data collection and organization of the data are given. The methods are based on availability of data, period and objectives of the research undertaken.The description, analyses and the results of the study are covered in this chapter.
Resumo:
The study evolved from the basic premise that the existing distribution structure is not adequate or adaptive to meet the needs of the expanding manufacturing sector and the emerging mass market. The hypothised causes of the problem are the following: marketing channels are not used for strategy differentiation by manufacturers: there are too many intermediaries in the channels; the distributive institutions are not adaptive; and there is very little control over the flow of products through the channels. These assumptions about the causes of the problem have been translated into specific hypotheses and tested with data. Empirical analysis, while supporting some of these hypotheses, challenges certain widely held notions. The ensuing summary presents the important findings, in the sequence in which they are discussed in the study.
Resumo:
Department of Statistics, Cochin University of Science and Technology
Resumo:
Department of Marine Geology and Geophysics,Cochin University of Science and Technology
Resumo:
Computational Biology is the research are that contributes to the analysis of biological data through the development of algorithms which will address significant research problems.The data from molecular biology includes DNA,RNA ,Protein and Gene expression data.Gene Expression Data provides the expression level of genes under different conditions.Gene expression is the process of transcribing the DNA sequence of a gene into mRNA sequences which in turn are later translated into proteins.The number of copies of mRNA produced is called the expression level of a gene.Gene expression data is organized in the form of a matrix. Rows in the matrix represent genes and columns in the matrix represent experimental conditions.Experimental conditions can be different tissue types or time points.Entries in the gene expression matrix are real values.Through the analysis of gene expression data it is possible to determine the behavioral patterns of genes such as similarity of their behavior,nature of their interaction,their respective contribution to the same pathways and so on. Similar expression patterns are exhibited by the genes participating in the same biological process.These patterns have immense relevance and application in bioinformatics and clinical research.Theses patterns are used in the medical domain for aid in more accurate diagnosis,prognosis,treatment planning.drug discovery and protein network analysis.To identify various patterns from gene expression data,data mining techniques are essential.Clustering is an important data mining technique for the analysis of gene expression data.To overcome the problems associated with clustering,biclustering is introduced.Biclustering refers to simultaneous clustering of both rows and columns of a data matrix. Clustering is a global whereas biclustering is a local model.Discovering local expression patterns is essential for identfying many genetic pathways that are not apparent otherwise.It is therefore necessary to move beyond the clustering paradigm towards developing approaches which are capable of discovering local patterns in gene expression data.A biclusters is a submatrix of the gene expression data matrix.The rows and columns in the submatrix need not be contiguous as in the gene expression data matrix.Biclusters are not disjoint.Computation of biclusters is costly because one will have to consider all the combinations of columans and rows in order to find out all the biclusters.The search space for the biclustering problem is 2 m+n where m and n are the number of genes and conditions respectively.Usually m+n is more than 3000.The biclustering problem is NP-hard.Biclustering is a powerful analytical tool for the biologist.The research reported in this thesis addresses the problem of biclustering.Ten algorithms are developed for the identification of coherent biclusters from gene expression data.All these algorithms are making use of a measure called mean squared residue to search for biclusters.The objective here is to identify the biclusters of maximum size with the mean squared residue lower than a given threshold. All these algorithms begin the search from tightly coregulated submatrices called the seeds.These seeds are generated by K-Means clustering algorithm.The algorithms developed can be classified as constraint based,greedy and metaheuristic.Constarint based algorithms uses one or more of the various constaints namely the MSR threshold and the MSR difference threshold.The greedy approach makes a locally optimal choice at each stage with the objective of finding the global optimum.In metaheuristic approaches particle Swarm Optimization(PSO) and variants of Greedy Randomized Adaptive Search Procedure(GRASP) are used for the identification of biclusters.These algorithms are implemented on the Yeast and Lymphoma datasets.Biologically relevant and statistically significant biclusters are identified by all these algorithms which are validated by Gene Ontology database.All these algorithms are compared with some other biclustering algorithms.Algorithms developed in this work overcome some of the problems associated with the already existing algorithms.With the help of some of the algorithms which are developed in this work biclusters with very high row variance,which is higher than the row variance of any other algorithm using mean squared residue, are identified from both Yeast and Lymphoma data sets.Such biclusters which make significant change in the expression level are highly relevant biologically.
Resumo:
Data centre is a centralized repository,either physical or virtual,for the storage,management and dissemination of data and information organized around a particular body and nerve centre of the present IT revolution.Data centre are expected to serve uniinterruptedly round the year enabling them to perform their functions,it consumes enormous energy in the present scenario.Tremendous growth in the demand from IT Industry made it customary to develop newer technologies for the better operation of data centre.Energy conservation activities in data centre mainly concentrate on the air conditioning system since it is the major mechanical sub-system which consumes considerable share of the total power consumption of the data centre.The data centre energy matrix is best represented by power utilization efficiency(PUE),which is defined as the ratio of the total facility power to the IT equipment power.Its value will be greater than one and a large value of PUE indicates that the sub-systems draw more power from the facility and the performance of the data will be poor from the stand point of energy conservation. PUE values of 1.4 to 1.6 are acievable by proper design and management techniques.Optimizing the air conditioning systems brings enormous opportunity in bringing down the PUE value.The air conditioning system can be optimized by two approaches namely,thermal management and air flow management.thermal management systems are now introduced by some companies but they are highly sophisticated and costly and do not catch much attention in the thumb rules.
Resumo:
This thesis Entitled “modelling and analysis of recurrent event data with multiple causes.Survival data is a term used for describing data that measures the time to occurrence of an event.In survival studies, the time to occurrence of an event is generally referred to as lifetime.Recurrent event data are commonly encountered in longitudinal studies when individuals are followed to observe the repeated occurrences of certain events. In many practical situations, individuals under study are exposed to the failure due to more than one causes and the eventual failure can be attributed to exactly one of these causes.The proposed model was useful in real life situations to study the effect of covariates on recurrences of certain events due to different causes.In Chapter 3, an additive hazards model for gap time distributions of recurrent event data with multiple causes was introduced. The parameter estimation and asymptotic properties were discussed .In Chapter 4, a shared frailty model for the analysis of bivariate competing risks data was presented and the estimation procedures for shared gamma frailty model, without covariates and with covariates, using EM algorithm were discussed. In Chapter 6, two nonparametric estimators for bivariate survivor function of paired recurrent event data were developed. The asymptotic properties of the estimators were studied. The proposed estimators were applied to a real life data set. Simulation studies were carried out to find the efficiency of the proposed estimators.
Resumo:
This thesis entitled Reliability Modelling and Analysis in Discrete time Some Concepts and Models Useful in the Analysis of discrete life time data.The present study consists of five chapters. In Chapter II we take up the derivation of some general results useful in reliability modelling that involves two component mixtures. Expression for the failure rate, mean residual life and second moment of residual life of the mixture distributions in terms of the corresponding quantities in the component distributions are investigated. Some applications of these results are also pointed out. The role of the geometric,Waring and negative hypergeometric distributions as models of life lengths in the discrete time domain has been discussed already. While describing various reliability characteristics, it was found that they can be often considered as a class. The applicability of these models in single populations naturally extends to the case of populations composed of sub-populations making mixtures of these distributions worth investigating. Accordingly the general properties, various reliability characteristics and characterizations of these models are discussed in chapter III. Inference of parameters in mixture distribution is usually a difficult problem because the mass function of the mixture is a linear function of the component masses that makes manipulation of the likelihood equations, leastsquare function etc and the resulting computations.very difficult. We show that one of our characterizations help in inferring the parameters of the geometric mixture without involving computational hazards. As mentioned in the review of results in the previous sections, partial moments were not studied extensively in literature especially in the case of discrete distributions. Chapters IV and V deal with descending and ascending partial factorial moments. Apart from studying their properties, we prove characterizations of distributions by functional forms of partial moments and establish recurrence relations between successive moments for some well known families. It is further demonstrated that partial moments are equally efficient and convenient compared to many of the conventional tools to resolve practical problems in reliability modelling and analysis. The study concludes by indicating some new problems that surfaced during the course of the present investigation which could be the subject for a future work in this area.
Resumo:
Reliability analysis is a well established branch of statistics that deals with the statistical study of different aspects of lifetimes of a system of components. As we pointed out earlier that major part of the theory and applications in connection with reliability analysis were discussed based on the measures in terms of distribution function. In the beginning chapters of the thesis, we have described some attractive features of quantile functions and the relevance of its use in reliability analysis. Motivated by the works of Parzen (1979), Freimer et al. (1988) and Gilchrist (2000), who indicated the scope of quantile functions in reliability analysis and as a follow up of the systematic study in this connection by Nair and Sankaran (2009), in the present work we tried to extend their ideas to develop necessary theoretical framework for lifetime data analysis. In Chapter 1, we have given the relevance and scope of the study and a brief outline of the work we have carried out. Chapter 2 of this thesis is devoted to the presentation of various concepts and their brief reviews, which were useful for the discussions in the subsequent chapters .In the introduction of Chapter 4, we have pointed out the role of ageing concepts in reliability analysis and in identifying life distributions .In Chapter 6, we have studied the first two L-moments of residual life and their relevance in various applications of reliability analysis. We have shown that the first L-moment of residual function is equivalent to the vitality function, which have been widely discussed in the literature .In Chapter 7, we have defined percentile residual life in reversed time (RPRL) and derived its relationship with reversed hazard rate (RHR). We have discussed the characterization problem of RPRL and demonstrated with an example that the RPRL for given does not determine the distribution uniquely
Resumo:
This work identifies the importance of plenum pressure on the performance of the data centre. The present methodology followed in the industry considers the pressure drop across the tile as a dependant variable, but it is shown in this work that this is the only one independent variable that is responsible for the entire flow dynamics in the data centre, and any design or assessment procedure must consider the pressure difference across the tile as the primary independent variable. This concept is further explained by the studies on the effect of dampers on the flow characteristics. The dampers have found to introduce an additional pressure drop there by reducing the effective pressure drop across the tile. The effect of damper is to change the flow both in quantitative and qualitative aspects. But the effect of damper on the flow in the quantitative aspect is only considered while using the damper as an aid for capacity control. Results from the present study suggest that the use of dampers must be avoided in data centre and well designed tiles which give required flow rates must be used in the appropriate locations. In the present study the effect of hot air recirculation is studied with suitable assumptions. It identifies that, the pressure drop across the tile is a dominant parameter which governs the recirculation. The rack suction pressure of the hardware along with the pressure drop across the tile determines the point of recirculation in the cold aisle. The positioning of hardware in the racks play an important role in controlling the recirculation point. The present study is thus helpful in the design of data centre air flow, based on the theory of jets. The air flow can be modelled both quantitatively and qualitatively based on the results.