22 resultados para Butyl Acrylate
em Cochin University of Science
Resumo:
The present study describes the preparation of Vinyl acetate-Butyl acrylate copolymer lattices of varying compositions and solid contents by semicontinuous emulsion polymerization method. This copolymer lattices were used as binder to develop a new surface coating formulation. The properties of this surface coating were improved by using nano TiO2 colloidal sol as a pigment. Antimicrobial activity of surface coatings was improved by the addition of carboxymethyl chitosan as biocide. Uniformly dispersed tyre crumb was used to give a mat finish to the coating. The mechanical properties adhesive properties, thermal properties etc. of the coatings are presented in thesis.
Resumo:
Ethylene-propylene-diene rubber (EPDM) and isobutylene-isoprene rubber (IIR) were compounded, precured to a low degree, and then were blended with natural rubber (NR). The compounding ingredients for NR were then added and the final curing was done. NR/ EPDM and NR/IIR blends, prepared using this method, were found to possess much improved mechanical properties as compared to their conventional counterparts. The optimum precuring crosslink density that has to be given to the EPDM and IIR phases has been determined.
Resumo:
Poly(6-tert-butyl-3,4-dihydro-2H-1,3-benzoxazine) was synthesized by thermally activated cationic ring opening polymerization. The structure of the polymer was confirmed by spectral and thermal studies. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were estimated using cyclic voltammetry and optical absorption. Modulated photocurrent measurement technique was employed to study the spectral and field dependence of photocurrent. Photocurrent of the order of 1.5 micro A/m2 was obtained for polymer at a biasing electric field of 40 V/mico m.
Resumo:
Iron and mixed iron aluminium pillared montmorillonites prepared by partial hydrolysis method was subjected to room temperature exchange with transition metals of the first series. The materials exhibit good structural as well as thermal stability. Exchanged metals were found to be present inside the porous network, in the environs of the pillars. Mixed pillaring resulted in the intercalation of Al 13 like polymers in which Al is partially substituted by Fe. The acidic structure was followed by temperature programmed desorption of ammonia and cumene cracking test reaction. Weak and medium sites overshadow the strong sites in all systems. However, exchange with metals increases the number of strong sites. The prepared materials are efficient catalysts for gas phase MTBE synthesis. The catalytic activity can be well correlated with the total amount of weak and medium acid sites.
Resumo:
Optical absorption and emission spectral studies of various phthalocyanine molecules, viz., LaPc, NdPc, SmPc, EuPc, CuPc and ZnPc in a polymer matrix of cyano acrylate are reported for the first time. All the absorption spectra show an intense B band (Soret) in the UV region followed by a weaker Q band in the visible region. The positions of the Q and B bands are found to have dependence on the metallic substitution. Values of the important spectral parameters, viz., molar extinction coefficient (ϵ), oscillator strength (f), radiative transition rate and decay time of the excited singlet state are also presented and compared with other solid matrices. The recorded fluorescence spectrum shows two broad emission bands in the case of NdPc, whereas for ZnPc only a very weak band is observed. The absence of emission bands for the other metallated phthalocyanines is attributed to increased spin orbit interaction and intersystem crossing.
Resumo:
The distribution of curing agents and fillers in the constituents of an elastomer blend is an important factor which determines the curing behaviour and vulcanizate properties of the blend. The distribution of curatives and fillers largely depends on the nature of elastomers. The curatives tend to migrate preferentially to the rubber of higher unsaturation and/or higher polarity, and reinforcing fillers tend to get distributed in the low viscosity phase, resulting in inferior mechanical properties of the blends. The thesis suggests several methods for improving mechanical properties of blends like NBR/butyl, NR/butyl, NBR/EPDM and NR/.
Resumo:
The first chapter of the thesis gives a general introduction about flexible electronics, dielectrics and composites. The recent developments in flexible electronics also discussed in this chapter. The preparation and characterization techniques used for the butyl rubber ceramic composites are given in chapter 2. The synthesis and characterization of butyl rubber filled with low permittivity ceramic composites are described in chapter 3. The chapter 4 deals with the synthesis and characterization of butyl rubber-high permittivity ceramic composites. The effect of high permittivity ceramic fillers such as TiO2, Sr2Ce2Ti5O15 and SrTiO3 on dielectric, thermal and mechanical properties was studied. The present investigation deals with synthesis, characterization and properties of butyl rubber composites with low, high and very high ceramic fillers and also the effect of particle size on dielectric, thermal and mechanical properties of selected composites.
Resumo:
The thesis deals with the synthesis, characterization and catalytic activity studies of supported cobalt(ii), nickel(II) and copper(II) complexes of O-phenylenediamine and Schiff bases derived from 3-hydroxyquinoxaline -2-carboxaldehyde. Zeolite encapsulation and polymer anchoring was employed for supporting the complexes. The characterization techniques proved that the encapsulation as well as polymer supporting has been successfully achieved. The catalytic activity studies revealed that the activities of the simple complexes are improved upon encapsulation. Various characterization techniques are used such as, chemical analysis, EPR, magnetic measurements, FTIR studies, thermal analysis, electronic spectra, XRD, SEM, surface area, and GC.The present study indicated that the that the mechanism of oxidation of catechol and DTBC by hydrogen peroxide is not altered by the change in the coordination sphere around the metal ion due to encapsulation. This fact suggests outer sphere mechanism for the reactions. The catalytic activity by zeolite encapsulated complex was found to be slower than that by the neat complex. The slowing down of the reaction in the zeolite case is probably due to the constraint imposed by the zeolite framework. The rate of DTBC ( 3,5-di-tert-butylchatechol)oxidation was found to be greater than the rate of catechol oxidation. This is obviously due to the presence of electron donating tertiary butyl groups.
Resumo:
Zinc salts of ethyl, isopropyl, and butyl xanthates were prepared in the laboratory. The effect of these xanthates in combination with zinc diethyldithiocarbamate (ZDC) on the vulcanization of silica-filled NBR compounds has been studied at different temperatures. The cure times of these compounds were compared with that of NBR compounds containing tetramethylthiuram disulphide/dibenzthiazyl disulphide. The rubber compounds with the xanthates and ZDC were cured at various temperatures from 60 to 150°C. The sheets were molded and properties such as tensile strength, tear strength, crosslink density, elongation at break, compression set, abrasion resistance, flex resistance, heat buildup, etc. were evaluated. The properties showed that zinc salt of xanthate/ZDC combination has a positive synergistic effect on the cure rate and mechanical properties of NBR compounds.
Resumo:
Zinc salts of ethyl, isopropyl, and butyl xanthates are prepared in the laboratory, and the effect of these xanthates with zinc diethyl dithiocarbamate (ZDC) on the vulcanization of HAF-filled nitrile butadiene rubber (NBR) compounds has been studied at different temperatures. The cure times of these compounds have been compared with that of NBR compounds containing TMTD/MBTS. The rubber compounds with the three xanthate accelerators and ZDC are cured at various temperatures from 60 to 150°C. The sheets are molded and properties such as tensile strength, tear strength, cross-link density, elongation at break, compression set, abrasion resistance, flex resistance, etc. have been evaluated. The properties show that zinc salt of the xanthate/ZDC accelerator system has a positive synergistic effect on the cure rate and mechanical properties of NBR compounds.
Resumo:
Zinc butyl xanthate [Zn(bxt)2] was prepared in the laboratory . The effect of this xanthate with zinc diethyl dithiocarbamate (ZDC) on the vulcanization of natural rubber ( NR), polybutadiene rubber (BR), and NR/BR blend has been studied at different temperatures. The amounts of Zn (bxt)2 and ZDC in the compounds were optimized by varying the amount of ZDC from 0 . 75 to 1.5 phr and Zn (bxt)2 from 0 . 75 to 1 .5 phr. The cure characteristics were also studied . HAF filled NR, BR, and NR / BR blend compounds were cured at different temperatures from 60 to 150 C. The sheets were molded and properties such as tensile strength, tear strength, crosslink density and elongation at break, compression set, abrasion resistance, etc. were evaluated. The results show that the mechanical properties of 80NR/20BR blends are closer to that of NR vulcanizates, properties of 60NR/40BR blends are closer to BR vulcanizates, while the 70NR/30BR blends show an intermediate property.
Resumo:
Zinc salts of ethyl, isopropyl and butyl xanthates were prepared in the laboratory. The effect of these xanthates with zinc diethyldithiocarbamate (ZDC) on the vulcanization of HAF filled NR compound has been studied at different temperatures. The rubber compounds with the three xanthate accelerators and ZDC were cured at various temperatures from 60°C to 150°C. The sheets were moulded and properties such as tensile strength , tear strength , cross-link density, elongation -at-break, compression set, heat build up, abrasion resistance, flex resistance , etc. were evaluated . The properties showed that zinc xanthate/ZDC accelerator combination has a positive synergistic effect on the mechanical properties of NR compounds. The curing of HAF filled NR compound containing zinc xanthate /ZDC is slightly slower than the curing of the corresponding gum compounds . It is observed that, by gradually increasing the amount of the accelerator, the cure time of black filled NR compound can be made equal to that of the gum compou
Resumo:
Butyl (IIR) tube reclaim (RR) was mixed with carbon black filled natural rubber (NR) compounds at various percentages. The blend containing a low percentage of RR was found to show improved ageing resistance and improved processability with out much reduction in the mechanical properties.
Resumo:
ABSTRACT: Zinc salts of ethyl, isopropyl, and butyl xanthates were prepared in the laboratory. They were purified by reprecipitation and were characterized by IR, NMR, and thermogravimetric analysis techniques. The melting points were also determined. The rubber compounds with different xanthate accelerators were cured at temperatures from 30 to 150°C. The sheets were molded and properties such as tensile strength, tear strength, crosslink density, elongation at break, and modulus at 300% elongation were evaluated. The properties showed that all three xanthate accelerators are effective for room temperature curing.