16 resultados para Bismuth zinc niobium oxide
em Cochin University of Science
Resumo:
Structural, electronic, and optical properties of amorphous and transparent zinc tin oxide films deposited on glass substrates by pulsed laser deposition (PLD) were examined for two chemical compositions of Zn:Sn=1:1 and 2:1 as a function of oxygen partial pressure PO2 used for the film deposition and annealing temperature. Different from a previous report on sputter-deposited films Chiang et al., Appl. Phys. Lett. 86, 013503 2005 , the PLD-deposited films crystallized at a lower temperature 450 °C to give crystalline ZnO and SnO2 phases. The optical band gaps Tauc gaps were 2.80−2.85 eV and almost independent of oxygen PO2 , which are smaller than those of the corresponding crystals 3.35−3.89 eV . Films deposited at low PO2 showed significant subgap absorptions, which were reduced by postthermal annealing. Hall mobility showed steep increases when carrier concentration exceeded threshold values and the threshold value depended on the film chemical composition. The films deposited at low PO2 2 Pa had low carrier concentrations. It is thought that the low PO2 produced high-density oxygen deficiencies and generated electrons, but these electrons were trapped in localized states, which would be observed as the subgap absorptions. Similar effects were observed for 600 °C crystallized films and their resistivities were increased by formation of subgap states due to the reducing high-temperature condition. High carrier concentrations and large mobilities were obtained in an intermediate PO2 region for the as-deposited films.
Resumo:
A series of vanadium-niobium oxide catalysts in which the vanadia content varies between 0.3 and 18mol%was prepared by coprecipitation. These catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), low-energy ion scattering (LEIS), and by catalytic testing in the oxidative dehydrogenation reaction of propane. The results of the surface analysis by XPS and LEIS are compared. It is concluded that the active site on the catalyst surface contains 2.0 ± 0.3 vanadium atoms on average. This can be understood byassuming the existenceof two or three different sites:isolated vanadium atoms, pairs of vanadium atoms, or ensembles of three vanadium atoms. At higher vanadium concentration more vanadium clusters with a higher activity are at the surface.LEIS revealed that as the vanadium concentration in the catalyst increases, vanadium replaces niobium at the surface. At vanadium concentrations above 8 mol%, new phases such as P-(Nb, V)20S which are less active because vanadium is present in isolated sites are formed, while the vanadium surface concentration shows a slight decrease
Resumo:
Highly conductive and transparent thin films of amorphous zinc indium tin oxide are prepared at room temperature by co-sputtering of zinc 10 oxide and indium tin oxide. Cationic contents in the films are varied by adjusting the power to the sputtering targets. Optical transmission study of 11 films showed an average transmission greater than 85% across the visible region. Maximum conductivity of 6×102 S cm−1 is obtained for Zn/In/ 12 Sn atomic ratio 0.4/0.4/0.2 in the film. Hall mobility strongly depends on carrier concentration and maximum mobility obtained is 18 cm2 V−1 s−1 13 at a carrier concentration of 2.1×1020 cm−3. Optical band gap of films varied from 3.44 eV to 3 eV with the increase of zinc content in the film 14 while the refractive index of the films at 600 nm is about 2.0.
Resumo:
This work mainly concentrate to understand the optical and electrical properties of amorphous zinc tin oxide and amorphous zinc indium tin oxide thin films for TFT applications. Amorphous materials are promising in achieving better device performance on temperature sensitive substrates compared to polycrystalline materials. Most of these amorphous oxides are multicomponent and as such there exists the need for an optimized chemical composition. For this we have to make individual targets with required chemical composition to use it in conventional thin film deposition techniques like PLD and sputtering. Instead, if we use separate targets for each of the cationic element and if separately control the power during the simultaneous sputtering process, then we can change the chemical composition by simply adjusting the sputtering power. This is what is done in co-sputtering technique. Eventhough there had some reports about thin film deposition using this technique, there was no reports about the use of this technique in TFT fabrication until very recent time. Hence in this work, co-sputtering has performed as a major technique for thin film deposition and TFT fabrication. PLD were also performed as it is a relatively new technique and allows the use high oxygen pressure during deposition. This helps to control the carrier density in the channel and also favours the smooth film surface. Both these properties are crucial in TFT.Zinc tin oxide material is interesting in the sense that it does not contain costly indium. Eventhough some works were already reported in ZTO based TFTs, there was no systematic study about ZTO thin film's various optoelectronic properties from a TFT manufacturing perspective. Attempts have made to analyse the ZTO films prepared by PLD and co-sputtering. As more type of cations present in the film, chances are high to form an amorphous phase. Zinc indium tin oxide is studied as a multicomponent oxide material suitable for TFT fabrication.
Resumo:
The main objective of the present study is to understand different mechanisms involved in the production and evolution of plasma by the pulsed laser ablation and radio frequency magnetron sputtering. These two methods are of particular interest, as these are well accomplished methods used for surface coatings, nanostructure fabrications and other thin film devices fabrications. Material science researchers all over the world are involved in the development of devices based on transparent conducting oxide (TCO) thin films. Our laboratory has been involved in the development of TCO devices like thin film diodes using zinc oxide (ZnO) and zinc magnesium oxide (ZnMgO), thin film transistors (TFT's) using zinc indium oxide and zinc indium tin oxide, and some electroluminescent (EL) devices by pulsed laser ablation and RF magnetron sputtering.In contrast to the extensive literature relating to pure ZnO and other thin films produced by various deposition techniques, there appears to have been relatively little effort directed towards the characterization of plasmas from which such films are produced. The knowledge of plasma dynamics corresponding to the variations in the input parameters of ablation and sputtering, with the kind of laser/magnetron used for the generation of plasma, is limited. To improve the quality of the deposited films for desired application, a sound understanding of the plume dynamics, physical and chemical properties of the species in the plume is required. Generally, there is a correlation between the plume dynamics and the structural properties of the films deposited. Thus the study of the characteristics of the plume contributes to a better understanding and control of the deposition process itself. The hydrodynamic expansion of the plume, the composition, and SIze distribution of clusters depend not only on initial conditions of plasma production but also on the ambient gas composition and pressure. The growth and deposition of the films are detennined by the thermodynamic parameters of the target material and initial conditions such as electron temperature and density of the plasma.For optimizing the deposition parameters of various films (stoichiometric or otherwise), in-situ or ex-situ monitoring of plasma plume dynamics become necessary for the purpose of repeatability and reliability. With this in mind, the plume dynamics and compositions of laser ablated and RF magnetron sputtered zinc oxide plasmas have been investigated. The plasmas studied were produced at conditions employed typically for the deposition of ZnO films by both methods. Apart from this two component ZnO plasma, a multi-component material (lead zirconium titanate) was ablated and plasma was characterized.
Resumo:
In recent years scientists have made rapid and significant advances in the field of semiconductor physics. One of the most important fields of current interest in materials science is the fundamental aspects and applications of conducting transparent oxide thin films (TCO). The characteristic properties of such coatings are low electrical resistivity and high transparency in the visible region. The first semitransparent and electrically conducting CdO film was reported as early as in 1907 [1]. Though early work on these films was performed out of purely scientific interest, substantial technological advances in such films were made after 1940. The technological interest in the study of transparent semiconducting films was generated mainly due to the potential applications of these materials both in industry and research. Such films demonstrated their utility as transparent electrical heaters for windscreens in the aircraft industry. However, during the last decade, these conducting transparent films have been widely used in a variety of other applications such as gas sensors [2], solar cells [3], heat reflectors [4], light emitting devices [5] and laser damage resistant coatings in high power laser technology [6]. Just a few materials dominate the current TCO industry and the two dominant markets for TCO’s are in architectural applications and flat panel displays. The architectural use of TCO is for energy efficient windows. Fluorine doped tin oxide (FTO), deposited using a pyrolysis process is the TCO usually finds maximum application. SnO2 also finds application ad coatings for windows, which are efficient in preventing radiative heat loss, due to low emissivity (0.16). Pyrolitic tin oxide is used in PV modules, touch screens and plasma displays. However indium tin oxide (ITO) is mostly used in the majority of flat panel display (FPD) applications. In FPDs, the basic function of ITO is as transparent electrodes. The volume of FPD’s produced, and hence the volume of ITO coatings produced, continues to grow rapidly. But the current increase in the cost of indium and the scarcity of this material created the difficulty in obtaining low cost TCOs. Hence search for alternative TCO materials has been a topic of active research for the last few decades. This resulted in the development of binary materials like ZnO, SnO2, CdO and ternary materials like II Zn2SnO4, CdSb2O6:Y, ZnSO3, GaInO3 etc. The use of multicomponent oxide materials makes it possible to have TCO films suitable for specialized applications because by altering their chemical compositions, one can control the electrical, optical, chemical and physical properties. But the advantages of using binary materials are the easiness to control the chemical compositions and depositions conditions. Recently, there were reports claiming the deposition of CdO:In films with a resistivity of the order of 10-5 ohm cm for flat panel displays and solar cells. However they find limited use because of Cd-Toxicity. In this regard, ZnO films developed in 1980s, are very useful as these use Zn, an abundant, inexpensive and nontoxic material. Resistivity of this material is still not very low, but can be reduced through doping with group-III elements like In, Al or Ga or with F [6]. Hence there is a great interest in ZnO as an alternative of ITO. In the present study, we prepared and characterized transparent and conducting ZnO thin films, using a cost effective technique viz Chemical Spray Pyrolysis (CSP). This technique is also suitable for large area film deposition. It involves spraying a solution, (usually aqueous) containing soluble salts of the constituents of the desired compound, onto a heated substrate.
Resumo:
Optical emission spectroscopic studies were carried out on the plasma produced by ablation of zinc oxide target using the third harmonic 355 nm of Q-switched Nd:YAG laser, in vacuum and at three different ambient gas oxygen pressures. The spatial variations of electron density Ne and electron temperature Te were studied up to a distance of 20 mm from the target surface. The kinematics of the emitted particles and the expansion of the plume edge are discussed. The optimum conditions favorable for the formation of high quality zinc oxide thin films are thereby suggested.
Resumo:
Zinc oxide (ZnO) thin films were deposited on quartz, silicon, and polymer substrates by pulsed laser deposition (PLD) technique at different oxygen partial pressures (0.007 mbar to 0.003 mbar). Polycrystalline ZnO films were obtained at room temperature when the oxygen pressure was between 0.003 mbar and .007 mbar, above and below this pressure the films were amorphous as indicated by the X-ray diffraction (XRD). ZnO films were deposited on Al2O3 (0001) at different substrate temperatures varying from 400oC to 600oC and full width half maximum (FWHM) of XRD peak is observed to decrease as substrate temperature increases. The optical band gaps of these films were nearly 3.3 eV. A cylindrical Langmuir probe is used for the investigation of plasma plume arising from the ZnO target. The spatial and temporal variations in electron density and electron temperature are studied. Optical emission spectroscopy is used to identify the different ionic species in the plume. Strong emission lines of neutral Zn, Zn+ and neutral oxygen are observed. No electronically excited O+ cations are identified, which is in agreement with previous studies of ZnO plasma plume.
Resumo:
Department of Applied Chemistry, Cochin University of Science and Technology
Resumo:
Various synthesis routes have been developed in recent years for the preparation of nanoparticles. One of those methods is polymer induced crystallization. The first objective of the present work was to prepare nano ZnO powder by polymer induced crystallization in chitosan solution and to characterize the material using different techniques like TEM, SEM, XRD, FTLR, UV spectroscopy, TGA, DSC etc.The second object of the study is to prepare composites using nano ZnO. It has been undertaken to explore the potential of nano ZnO as reinforcement in engineering as well as commodity thermoplastics to widen their application spectra. We selected three engineering thermoplastics like [poly ethylene terephthalate, polyamide 6, and polycarbonate] and three commodity plastics like [polypropylene, high density polyethylene, and polystyrene] for the study. To date one of the few disadvantages associated with nanoparticle incorporation has concerned toughness and impact performance. Modification of polymers could reduce impact performance. The present study also focused on whether nano ZnO can act as a modifier for thennoplastics, without sacrificing their impact strength.
Resumo:
This thesis deals with the preparation and properties of two compounds of V-II family, viz. bismuth telluride and bismuth oxide, in thin filmform. In the first chapter is given the resume of basic solid state physics relevant to the work reported here. In the second chapter the different methods of thin film preparationtia described. Third chapter deals with the experimental techniques used for preparation and characterization of the films. Fourth chapter deals with the preparation and propertiesof bismuth telluride films. In next four chapters, the preparation and properties of bismuth oxide films are discussed in detail. In the last chapter the use of Bi205 films in the fabrication of Heat mirrors is examined and discussed.
Resumo:
The increasing interest in the interaction of light with electricity and electronically active materials made the materials and techniques for producing semitransparent electrically conducting films particularly attractive. Transparent conductors have found major applications in a number of electronic and optoelectronic devices including resistors, transparent heating elements, antistatic and electromagnetic shield coatings, transparent electrode for solar cells, antireflection coatings, heat reflecting mirrors in glass windows and many other. Tin doped indium oxide (indium tin oxide or ITO) is one of the most commonly used transparent conducting oxides. At present and likely well into the future this material offers best available performance in terms of conductivity and transmittivity combined with excellent environmental stability, reproducibility and good surface morphology. Although partial transparency, with a reduction in conductivity, can be obtained for very thin metallic films, high transparency and simultaneously high conductivity cannot be attained in intrinsic stoichiometric materials. The only way this can be achieved is by creating electron degeneracy in a wide bandgap (Eg > 3eV or more for visible radiation) material by controllably introducing non-stoichiometry and/or appropriate dopants. These conditions can be conveniently met for ITO as well as a number of other materials like Zinc oxide, Cadmium oxide etc. ITO shows interesting and technologically important combination of properties viz high luminous transmittance, high IR reflectance, good electrical conductivity, excellent substrate adherence and chemical inertness. ITO is a key part of solar cells, window coatings, energy efficient buildings, and flat panel displays. In solar cells, ITO can be the transparent, conducting top layer that lets light into the cell to shine the junction and lets electricity flow out. Improving the ITO layer can help improve the solar cell efficiency. A transparent ii conducting oxide is a material with high transparency in a derived part of the spectrum and high electrical conductivity. Beyond these key properties of transparent conducting oxides (TCOs), ITO has a number of other key characteristics. The structure of ITO can be amorphous, crystalline, or mixed, depending on the deposition temperature and atmosphere. The electro-optical properties are a function of the crystallinity of the material. In general, ITO deposited at room temperature is amorphous, and ITO deposited at higher temperatures is crystalline. Depositing at high temperatures is more expensive than at room temperature, and this method may not be compatible with the underlying devices. The main objective of this thesis work is to optimise the growth conditions of Indium tin oxide thin films at low processing temperatures. The films are prepared by radio frequency magnetron sputtering under various deposition conditions. The films are also deposited on to flexible substrates by employing bias sputtering technique. The films thus grown were characterised using different tools. A powder x-ray diffractometer was used to analyse the crystalline nature of the films. The energy dispersive x-ray analysis (EDX) and scanning electron microscopy (SEM) were used for evaluating the composition and morphology of the films. Optical properties were investigated using the UVVIS- NIR spectrophotometer by recording the transmission/absorption spectra. The electrical properties were studied using vander Pauw four probe technique. The plasma generated during the sputtering of the ITO target was analysed using Langmuir probe and optical emission spectral studies.
Resumo:
PP has been getting much attention over the years because it is a very durable polymer commonly used in aggressive environments including automotive battery casings, fuel containers etc. They are used to make bottles, fibers for clothing, components in cars etc. However, it has some shortcomings such as low dimensional and thermal stability. Materials such as metal oxides with sizes of the order 1–50 nm have received a great deal of attention because of their versatile applications in polymer/ inorganic nanocomposites, optoelectronic devices, biomedical materials, and other areas. They are stable under harsh process conditions and also regarded as safe materials to human beings and animals. In the present investigation, PP is modified by incorporating metal oxide nanoparticles such as ZnO and TiO2 by simple melt mixing method. Melt spinning method was used to prepare PP/metal oxide nanocomposite fibers. Various studies have been carried out on these composites and fibers. In the first part of the study, ZnO nanoparticles were prepared from ZnCl2 and NaOH in presence of chitosan, PVA, ethanol and starch. This is a simple and inexpensive method compared to other methods. Change in morphology and particle size of ZnO were studied. Least particle size was obtained in chitosan medium. The particles were characterized by using XRD, SEM, TEM, TGA and EDAX. Antibacterial properties of ZnO prepared in chitosan medium (NZO) and commercial zinc oxide (CZO) were evaluated using a gram positive and a gram negative bacteria
Resumo:
One of the main challenges in the development of metal-oxide gas sensors is enhancement of selectivity to a particular gas. Currently, two general approaches exist for enhancing the selective properties of sensors. The first one is aimed at preparing a material that is specifically sensitive to one compound and has low or zero cross-sensitivity to other compounds that may be present in the working atmosphere. To do this, the optimal temperature, doping elements, and their concentrations are investigated. Nonetheless, it is usually very difficult to achieve an absolutely selective metal oxide gas sensor in practice. Another approach is based on the preparation of materials for discrimination between several analyte in a mixture. It is impossible to do this by using one sensor signal. Therefore, it is usually done either by modulation of sensor temperature or by using sensor arrays. The present work focus on the characterization of n-type semiconducting metal oxides like Tungsten oxide (WO3), Zinc Oxide (ZnO) and Indium oxide (In2O3) for the gas sensing purpose. For the purpose of gas sensing thick as well as thin films were fabricated. Two different gases, NO2 and H2S gases were selected in order to study the gas sensing behaviour of these metal oxides. To study the problem associated with selectivity the metal oxides were doped with metals and the gas sensing characteristics were investigated. The present thesis is entitled “Development of semiconductor metal oxide gas sensors for the detection of NO2 and H2S gases” and consists of six chapters.