6 resultados para BFRP rods
em Cochin University of Science
Direction Dependent Transmission Characteristics of Dye Mixture Doped Polymer Optical Fibre Preforms
Resumo:
The direction dependant wavelength selective transmission mechanism in poly (methyl methacrylate)(PMMA) rods doped with C 540 dye and C 540:Rh.B dye mixture as a combination has been investigated. When a polished slice of pure C 540 doped polymer rod was used side by side with a C540:Rh B doped rod with acceptor concentration [A] = 7x10-4 m/l , we could notice more than 100% change in the transmitted intensity along opposite directions at the C 540, Rh B emission and the excitation wavelengths . A blue high bright LED emitting at a peak wavelength 465nm was used as the excitation source.
Direction Dependent Transmission Characteristics of Dye Mixture Doped Polymer Optical Fibre Preforms
Resumo:
The direction dependant wavelength selective transmission mechanism in poly (methyl methacrylate)(PMMA) rods doped with C 540 dye and C 540:Rh.B dye mixture as a combination has been investigated. When a polished slice of pure C 540 doped polymer rod was used side by side with a C540:Rh B doped rod with acceptor concentration [A] = 7x10-4 m/l , we could notice more than 100% change in the transmitted intensity along opposite directions at the C 540, Rh B emission and the excitation wavelengths . A blue high bright LED emitting at a peak wavelength 465nm was used as the excitation source.
Direction Dependent Transmission Characteristics of Dye Mixture Doped Polymer Optical Fibre Preforms
Resumo:
The direction dependant wavelength selective transmission mechanism in poly (methyl methacrylate)(PMMA) rods doped with C 540 dye and C 540:Rh.B dye mixture as a combination has been investigated. When a polished slice of pure C 540 doped polymer rod was used side by side with a C540:Rh B doped rod with acceptor concentration [A] = 7x10-4 m/l , we could notice more than 100% change in the transmitted intensity along opposite directions at the C 540, Rh B emission and the excitation wavelengths . A blue high bright LED emitting at a peak wavelength 465nm was used as the excitation source.
Resumo:
This study was conducted to identify the concentration dependence of the operating wavelengths and the relative intensities in which a dye mixture doped polymer optical fibre can operate. A comparative study of the radiative and Forster type energy transfer processes in Coumarin 540:Rhodamine 6G, Coumarin 540:Rhodamine B and Rhodamine 6G:Rhodamine B in methyl methacrylate (MMA) and poly(methyl methacrylate) (PMMA) was done by fabricating a series of dye mixture doped polymer rods which have two emission peaks with varying relative intensities. These rods can be used as preforms for the fabrication of polymer optical fibre amplifiers operating in the multi-wavelength regime. The 445 nm line from an Nd:YAG pumped optical parametric oscillator (OPO) was used as the excitation source for the first two dye pairs and a frequency doubled Nd:YAG laser emitting at 532 nm was used to excite the Rh 6G:Rh B pair. The fluorescence lifetimes of the donor molecule in pure form as well as in the mixtures were experimentally measured in both monomer and polymer matrices by time-correlated single photon counting technique. The energy transfer rate constants and transfer efficiencies were calculated and their dependence on the acceptor concentration was analysed. It was found that radiative energy transfer mechanisms are more efficient in all the three dye pairs in liquid and solid matrices.
Resumo:
Dependence of energy transfer parameters on excitation wavelength has been investigated in poly (methyl methacrylate) (PMMA) optical fibre preforms doped with C 540:Rh B dye mixture by studying the fluorescence intensity and the lifetime variations. A fluorescence spectrophotometer was used to record the excitation spectra of the samples for the emission wavelengths 495 and 580 nm. The fluorescence emission from the polymer rods was studied at four specific excitation wavelengths viz; 445, 465, 488 and 532 nm. The fluorescence lifetime of the donor molecule was experimentally measured in polymer matrix by time correlated single photon counting technique. The energy transfer rate constants and transfer efficiencies were calculated and their dependence on the acceptor concentration was analysed for three excitation wavelengths. It was found that any change in the excitation wavelength leads to significant variations in the quenching characteristics, which in turn affect the calculated energy transfer parameters.
Resumo:
The present work deals with the characterization of polyhydroxyalkanoates accumulating vibrios from marine benthic environments and production studies of polyhydroxyalkanoates by vibrio sp.BTKB33. Vibrios are a group of (iram negative, curved or straight motile rods that normally inhabit the aquatic environments.The present study therefore aimed at evaluating the occurrence of PHA accumulating vibrios inhabiting marine benthic environments; characterizing the potential PHA accumulators employing phenotypic and genotypic approaches and molecular characterization of the PHA synthase gene. The study also evaluated the PHA production in V:'hri0 sp. strain BTKB33, through submerged fennentation using statistical optimization and characterized the purified biopolymer. Screening for PHA producing vibrios from marine benthic environments. Characterization of PHA producers employing phenotypic and genotypic approaches.The incidence of PHA accumulation in Vibrio sp. isolated from marine sediments was observed to be high, indicating that the natural habitat of these bacteria are stressful. Considering their ubiquitous nature, the ecological role played by vibrios in maintaining the delicate balance of the benthic ecosystem besides returning potential strains, with the ability to elaborate a plethora of extracellular enzymes for industrial application, is significant. The elaboration of several hydrolytic enzymes by individuals also emphasize the crucial role of vibrios in the mineralization process in the marine environment. This study throws light on the extracellular hydrolytic enzyme profile exhibited by vibrios. It was concluded that apart from the PHA accumulation, presence of exoenzyme production and higher MAR index also aids in their survival in the highly challenging benthic enviromnents. The phylogenetic analysis of the strains and studies on intra species variation within PHA accumulating strains reveal their diversity. The isolate selected for production in this study was Vibrio sp. strain BTKB33, identified as V.azureus by 16S rDNA sequencing and phenotypic characterization. The bioprocess variables for PHA production utilising submerged fermentation was optimized employing one-factor-at-a-time-method, PB design and RSM studies. The statistical optimization of bioprocess variables revealed that NaCl concentration, temperature and incubation period are the major bioprocess variables influencing PHA production and PHA content. The presence of Class I PHA synthase genes in BTKB33 was also unveiled. The characterization of phaC genes by PCR and of the extracted polymer employing FTIR and NMR analysis revealed the presence of polyhydroxybutyrate, smallest known PI-IAs, having wider domestic, industrial and medical application. The strain BTKB33 bearing a significant exoenzyme profile, can thus be manipulatedin future for utilization of diverse substrates as C- source for PHA production. In addition to BTKB33, several fast growing Vibrio sp. having PHA accumulating ability were also isolated, revealing the prospects of this environment as a mine for novel PHA accumulating microbes. The findings of this study will provide a reference for further research in industrial production of PHAs from marine microorganisms .