4 resultados para BFRP rods

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of cell-cell interactions in the nervous system are mediated by immunoglobulin gene superfamily members. For example, neuroglian, a homophilic neural cell adhesion molecule in Drosophila, has an extracellular portion comprising six C- 2 type immunoglobulin-like domains followed by five fibronectin type III (FnIII) repeats. Neuroglian shares this domain organization and significant sequence identity with Ll, a murine neural adhesion molecule that could be a functional homologue. Here I report the crystal structure of a proteolytic fragment containing the first two FnIII repeats of neuroglian (NgFn 1,2) at 2.0Å. The interpretation of photomicrographs of rotary shadowed Ng, the entire extracellular portion of neuroglian, and NgFnl-5, the five neuroglian Fn III domains, is also discussed.

The structure of NgFn 1,2 consists of two roughly cylindrical β-barrel structural motifs arranged in a head-to-tail fashion with the domains meeting at an angle of ~120, as defined by the cylinder axes. The folding topology of each domain is identical to that previously observed for single FnIII domains from tenascin and fibronectin. The domains of NgFn1,2 are related by an approximate two fold screw axis that is nearly parallel to the longest dimension of the fragment. Assuming this relative orientation is a general property of tandem FnIII repeats, the multiple tandem FnIII domains in neuroglian and other proteins are modeled as thin straight rods with two domain zig-zag repeats. When combined with the dimensions of pairs of tandem immunoglobulin-like domains from CD4 and CD2, this model suggests that neuroglian is a long narrow molecule (20 - 30 Å in diameter) that extends up to 370Å from the cell surface.

In photomicrographs, rotary shadowed Ng and NgFn1-5 appear to be highly flexible rod-like molecules. NgFn 1-5 is observed to bend in at least two positions and has a mean total length consistent with models generated from the NgFn1,2 structure. Ng molecules have up to four bends and a mean total length of 392 Å, consistent with a head-to-tail packing of neuroglian's C2-type domains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most space applications require deployable structures due to the limiting size of current launch vehicles. Specifically, payloads in nanosatellites such as CubeSats require very high compaction ratios due to the very limited space available in this typo of platform. Strain-energy-storing deployable structures can be suitable for these applications, but the curvature to which these structures can be folded is limited to the elastic range. Thanks to fiber microbuckling, high-strain composite materials can be folded into much higher curvatures without showing significant damage, which makes them suitable for very high compaction deployable structure applications. However, in applications that require carrying loads in compression, fiber microbuckling also dominates the strength of the material. A good understanding of the strength in compression of high-strain composites is then needed to determine how suitable they are for this type of application.

The goal of this thesis is to investigate, experimentally and numerically, the microbuckling in compression of high-strain composites. Particularly, the behavior in compression of unidirectional carbon fiber reinforced silicone rods (CFRS) is studied. Experimental testing of the compression failure of CFRS rods showed a higher strength in compression than the strength estimated by analytical models, which is unusual in standard polymer composites. This effect, first discovered in the present research, was attributed to the variation in random carbon fiber angles respect to the nominal direction. This is an important effect, as it implies that microbuckling strength might be increased by controlling the fiber angles. With a higher microbuckling strength, high-strain materials could carry loads in compression without reaching microbuckling and therefore be suitable for several space applications.

A finite element model was developed to predict the homogenized stiffness of the CFRS, and the homogenization results were used in another finite element model that simulated a homogenized rod under axial compression. A statistical representation of the fiber angles was implemented in the model. The presence of fiber angles increased the longitudinal shear stiffness of the material, resulting in a higher strength in compression. The simulations showed a large increase of the strength in compression for lower values of the standard deviation of the fiber angle, and a slight decrease of strength in compression for lower values of the mean fiber angle. The strength observed in the experiments was achieved with the minimum local angle standard deviation observed in the CFRS rods, whereas the shear stiffness measured in torsion tests was achieved with the overall fiber angle distribution observed in the CFRS rods.

High strain composites exhibit good bending capabilities, but they tend to be soft out-of-plane. To achieve a higher out-of-plane stiffness, the concept of dual-matrix composites is introduced. Dual-matrix composites are foldable composites which are soft in the crease regions and stiff elsewhere. Previous attempts to fabricate continuous dual-matrix fiber composite shells had limited performance due to excessive resin flow and matrix mixing. An alternative method, presented in this thesis uses UV-cure silicone and fiberglass to avoid these problems. Preliminary experiments on the effect of folding on the out-of-plane stiffness are presented. An application to a conical log-periodic antenna for CubeSats is proposed, using origami-inspired stowing schemes, that allow a conical dual-matrix composite shell to reach very high compaction ratios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis aims at a simple one-parameter macroscopic model of distributed damage and fracture of polymers that is amenable to a straightforward and efficient numerical implementation. The failure model is motivated by post-mortem fractographic observations of void nucleation, growth and coalescence in polyurea stretched to failure, and accounts for the specific fracture energy per unit area attendant to rupture of the material.

Furthermore, it is shown that the macroscopic model can be rigorously derived, in the sense of optimal scaling, from a micromechanical model of chain elasticity and failure regularized by means of fractional strain-gradient elasticity. Optimal scaling laws that supply a link between the single parameter of the macroscopic model, namely the critical energy-release rate of the material, and micromechanical parameters pertaining to the elasticity and strength of the polymer chains, and to the strain-gradient elasticity regularization, are derived. Based on optimal scaling laws, it is shown how the critical energy-release rate of specific materials can be determined from test data. In addition, the scope and fidelity of the model is demonstrated by means of an example of application, namely Taylor-impact experiments of polyurea rods. Hereby, optimal transportation meshfree approximation schemes using maximum-entropy interpolation functions are employed.

Finally, a different crazing model using full derivatives of the deformation gradient and a core cut-off is presented, along with a numerical non-local regularization model. The numerical model takes into account higher-order deformation gradients in a finite element framework. It is shown how the introduction of non-locality into the model stabilizes the effect of strain localization to small volumes in materials undergoing softening. From an investigation of craze formation in the limit of large deformations, convergence studies verifying scaling properties of both local- and non-local energy contributions are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An investigation was conducted to estimate the error when the flat-flux approximation is used to compute the resonance integral for a single absorber element embedded in a neutron source.

The investigation was initiated by assuming a parabolic flux distribution in computing the flux-averaged escape probability which occurs in the collision density equation. Furthermore, also assumed were both wide resonance and narrow resonance expressions for the resonance integral. The fact that this simple model demonstrated a decrease in the resonance integral motivated the more detailed investigation of the thesis.

An integral equation describing the collision density as a function of energy, position and angle is constructed and is subsequently specialized to the case of energy and spatial dependence. This equation is further simplified by expanding the spatial dependence in a series of Legendre polynomials (since a one-dimensional case is considered). In this form, the effects of slowing-down and flux depression may be accounted for to any degree of accuracy desired. The resulting integral equation for the energy dependence is thus solved numerically, considering the slowing down model and the infinite mass model as separate cases.

From the solution obtained by the above method, the error ascribable to the flat-flux approximation is obtained. In addition to this, the error introduced in the resonance integral in assuming no slowing down in the absorber is deduced. Results by Chernick for bismuth rods, and by Corngold for uranium slabs, are compared to the latter case, and these agree to within the approximations made.