7 resultados para Automóveis - Comercialização - Belo Horizonte (MG)

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of dopants with different valencies and ionic radii on the densification, structural ordering, and microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 (BMT) is investigated. It is found that dopants such as Sb2O5, MnO, ZrO2, WO3, and ZnO improve the microwave dielectric properties of BMT. Addition of trivalent dopants is detrimental to the cation ordering and dielectric properties of BMT. A correlation between the microwave dielectric properties of BMT and ionic radii of the dopant has been established. The variation of the dielectric properties of pure and doped BMT at cryogenic temperatures is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of glass additives on the densification , phase evolution, microstructure and microwave dielectric properties of Ba(Mg1;3 Ta2i3)03 (BMT) was investigated . Different weight percentages of quenched glass such as B203 , Si02, B203-SiO2, ZnO-B203, 5ZnO-2B2O3, Al203-SiO2, Na20-2B203.10H20, BaO-B203-SiO2, MgO-B203-SiO2, PbO-B203-SiO2 , ZnO-B203-SiO2 and 2MgO-Al203-5SiO2 were added to calcined BMT precursor . The sintering temperature of the glass -added BMT samples were lowered down to 1300 °C compared to solid-state sintering where the temperature was 1650 °C. The formation of high temperature satellite phases such as Ba5Ta4O15 and Ba7Ta6O22 were found to be suppressed by the glass addition . Addition of glass systems such as B203, ZnO-B203, 5ZnO-2B203 and ZnO-B203-SiO2 improved the densification and microwave dielectric properties. Other glasses were found to react with BMT to form low-Q phases which prevented densification . The microwave dielectric properties of undoped BMT with a densification of 93 . 1 % of the theoretical density were Cr = 24 . 8, Tr = 8 ppm/°C and Q„ x f= 80,000 GHz. The BMT doped with 1.0 wt% of B203 has Q„ x f = 124,700GHz, Cr = 24.2, and T f = -1.3 ppm /°C. The unloaded Q factor of 0.2 wt% ZnO-B203-doped BMT was 136,500 GHz while that of 1.0 wt% of 5ZnO-2B203 added ceramic was Q„ x f= 141,800 GHz . The best microwave quality factor was observed for ZnO -B203-SiO2 (ZBS) glass-added ceramics which can act as a perfect liquid-phase medium for the sintering of BMT. The microwave dielectric properties of 0.2wt% ZBS-added BMT dielectric was Q„ x f= 152,800 GHz, F,= 25.5, and Tr = - 1.5 ppm/°C

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MAGNESIUM ALLOYS have strong potential for weight reduction in a wide range of technical applications because of their low density compared to other structural metallic materials. Therefore, an extensive growth of magnesium alloys usage in the automobile sector is expected in the coming years to enhance the fuel efficiency through mass reduction. The drawback associated with the use of commercially cheaper Mg-Al based alloys, such as AZ91, AM60 and AM50 are their inferior creep properties above 100ºC due to the presence of discontinuous Mg17A112 phases at the grain boundaries. Although rare earth-based magnesium alloys show better mechanical properties, it is not economically viable to use these alloys in auto industries. Recently, many new Mg-Al based alloy systems have been developed for high temperature applications, which do not contain the Mg17Al12 phase. It has been proved that the addition of a high percentage of zinc (which depends upon the percentage of Al) to binary Mg-Al alloys also ensures the complete removal of the Mg17Al12 phase and hence exhibits superior high temperature properties.ZA84 alloy is one such system, which has 8%Zn in it (Mg-8Zn-4Al-0.2Mn, all are in wt %) and shows superior creep resistance compared to AZ and AM series alloys. These alloys are mostly used in die casting industries. However, there are certain large and heavy components, made up of this alloy by sand castings that show lower mechanical properties because of their coarse microstructure. Moreover, further improvement in their high temperature behaviour through microstructural modification is also an essential task to make this alloy suitable for the replacement of high strength aluminium alloys used in automobile industry. Grain refinement is an effective way to improve the tensile behaviour of engineering alloys. In fact, grain refinement of Mg-Al based alloys is well documented in literature. However, there is no grain refiner commercially available in the market for Mg-Al alloys. It is also reported in the literature that the microstructure of AZ91 alloy is modified through the minor elemental additions such as Sb, Si, Sr, Ca, etc., which enhance its high temperature properties because of the formation of new stable intermetallics. The same strategy can be used with the ZA84 alloy system to improve its high temperature properties further without sacrificing the other properties. The primary objective of the present research work, “Studies on grain refinement and alloying additions on the microstructure and mechanical properties of Mg-8Zn-4Al alloy” is twofold: 1. To investigate the role of individual and combined additions of Sb and Ca on the microstructure and mechanical properties of ZA84 alloy. 2. To synthesis a novel Mg-1wt%Al4C3 master alloy for grain refinement of ZA84 alloy and investigate its effects on mechanical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demand on magnesium and its alloys is increased significantly in the automotive industry because of their great potential in reducing the weight of components, thus resulting in improvement in fuel efficiency of the vehicle. To date, most of Mg products have been fabricated by casting, especially, by die-casting because of its high productivity, suitable strength, acceptable quality & dimensional accuracy and the components produced through sand, gravity and low pressure die casting are small extent. In fact, higher solidification rate is possible only in high pressure die casting, which results in finer grain size. However, achieving high cooling rate in gravity casting using sand and permanent moulds is a difficult task, which ends with a coarser grain nature and exhibit poor mechanical properties, which is an important aspect of the performance in industrial applications. Grain refinement is technologically attractive because it generally does not adversely affect ductility and toughness, contrary to most other strengthening methods. Therefore formation of fine grain structure in these castings is crucial, in order to improve the mechanical properties of these cast components. Therefore, the present investigation is “GRAIN REFINEMENT STUDIES ON Mg AND Mg-Al BASED ALLOYS”. The primary objective of this present investigation is to study the effect of various grain refining inoculants (Al-4B, Al- 5TiB2 master alloys, Al4C3, Charcoal particles) on Pure Mg and Mg-Al alloys such as AZ31, AZ91 and study their grain refining mechanisms. The second objective of this work is to study the effect of superheating process on the grain size of AZ31, AZ91 Mg alloys with and without inoculants addition. In addition, to study the effect of grain refinement on the mechanical properties of Mg and Mg-Al alloys. The thesis is well organized with seven chapters and the details of the studies are given below in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tin oxide(SnO2) andMgdoped(2,4,6,and8wt%)SnO2 nanoparticles weresynthesizedbytheself- propagating solutioncombustionsynthesisusingcitricacidasfuel.Thecharacterizationofsampleswas done byX-raydiffractionspectroscopy(XRD),transmissionelectronmicroscopy(TEM),UV–visible spectroscopy,SAEDandphotoluminescence(PL).XRDpatternandTEMstudiesshowthatthe synthesized particlesareofaveragesize30nmandtheyareintetragonalrutilestructureofSnO2. Combined blueandgreenemissionisseenin4wt%MgdopedSnO2 and intensityofbluebandis increased withrespecttoincreaseinMgdopantconcentrationwhichisattributedtoincreasein population ofoxygenvacancies.ThePLemissioninblueandgreenregionisduetothedoublycharged state (Vo 2þ) ofoxygenandtininterstitialdefectsrespectivelyandisexplainedwithanenergyband diagram