3 resultados para Alpine Fault
em Cochin University of Science
Resumo:
The present research problem is to study the existing encryption methods and to develop a new technique which is performance wise superior to other existing techniques and at the same time can be very well incorporated in the communication channels of Fault Tolerant Hard Real time systems along with existing Error Checking / Error Correcting codes, so that the intention of eaves dropping can be defeated. There are many encryption methods available now. Each method has got it's own merits and demerits. Similarly, many crypt analysis techniques which adversaries use are also available.
Resumo:
The hazards associated with major accident hazard (MAH) industries are fire, explosion and toxic gas releases. Of these, toxic gas release is the worst as it has the potential to cause extensive fatalities. Qualitative and quantitative hazard analyses are essential for the identitication and quantification of the hazards associated with chemical industries. This research work presents the results of a consequence analysis carried out to assess the damage potential of the hazardous material storages in an industrial area of central Kerala, India. A survey carried out in the major accident hazard (MAH) units in the industrial belt revealed that the major hazardous chemicals stored by the various industrial units are ammonia, chlorine, benzene, naphtha, cyclohexane, cyclohexanone and LPG. The damage potential of the above chemicals is assessed using consequence modelling. Modelling of pool fires for naphtha, cyclohexane, cyclohexanone, benzene and ammonia are carried out using TNO model. Vapor cloud explosion (VCE) modelling of LPG, cyclohexane and benzene are carried out using TNT equivalent model. Boiling liquid expanding vapor explosion (BLEVE) modelling of LPG is also carried out. Dispersion modelling of toxic chemicals like chlorine, ammonia and benzene is carried out using the ALOHA air quality model. Threat zones for different hazardous storages are estimated based on the consequence modelling. The distance covered by the threat zone was found to be maximum for chlorine release from a chlor-alkali industry located in the area. The results of consequence modelling are useful for the estimation of individual risk and societal risk in the above industrial area.Vulnerability assessment is carried out using probit functions for toxic, thermal and pressure loads. Individual and societal risks are also estimated at different locations. Mapping of threat zones due to different incident outcome cases from different MAH industries is done with the help of Are GIS.Fault Tree Analysis (FTA) is an established technique for hazard evaluation. This technique has the advantage of being both qualitative and quantitative, if the probabilities and frequencies of the basic events are known. However it is often difficult to estimate precisely the failure probability of the components due to insufficient data or vague characteristics of the basic event. It has been reported that availability of the failure probability data pertaining to local conditions is surprisingly limited in India. This thesis outlines the generation of failure probability values of the basic events that lead to the release of chlorine from the storage and filling facility of a major chlor-alkali industry located in the area using expert elicitation and proven fuzzy logic. Sensitivity analysis has been done to evaluate the percentage contribution of each basic event that could lead to chlorine release. Two dimensional fuzzy fault tree analysis (TDFFTA) has been proposed for balancing the hesitation factor invo1ved in expert elicitation .
Resumo:
In recent years, reversible logic has emerged as one of the most important approaches for power optimization with its application in low power CMOS, quantum computing and nanotechnology. Low power circuits implemented using reversible logic that provides single error correction – double error detection (SEC-DED) is proposed in this paper. The design is done using a new 4 x 4 reversible gate called ‘HCG’ for implementing hamming error coding and detection circuits. A parity preserving HCG (PPHCG) that preserves the input parity at the output bits is used for achieving fault tolerance for the hamming error coding and detection circuits.