15 resultados para Aldehyde reductase
em Cochin University of Science
Resumo:
The study deals with the diversity in structural and spectural characteristics of some transition metal complexes derived from aldehyde based thiosemicarbazone ligands thiosemicarbazones are a family of compounds with beneficial biological activity viz., anticancer,antitumour, antifungal, antibacterial, antimalarial, antifilarial, antiviral and anti-HIV activities. Many thiosemicarbazone ligands and their complexes have been prepared and screened for their antimicrobial activity against various types of fungi and bacteria. The results prove that the compounds exhibit antimicrobial properties and it is important to note that in some cases metal chelates show more inhibitory effects than the parent ligands. The increased lipophilicity of these complexes seems to be responsible for their enhanced biological potency. Adverse biological activities of thiosemicarbazones have been widely studied in rats and in other species. The parameters measured show that copper complexes caused considerable oxidative stress and zinc zinc complexes behaved as antioxidants. It has applications on analytical field also. Some thiosemicarbazones produce highly colored complexes with metal ions. This thesis aims to synthesis some novel thiosemicarbazone ligands and their transition metal complexes together with their physico-chemical characterization.
Resumo:
Thiosemicarbazones have emerged as an important class of ligands over a period of time, for a variety of reasons, such as variable donor properties, structural diversity and biological applications. Interesting as the coordination chemistry may be, the driving force for the study of these ligands has undoubtedly been their biological properties and the majority of the 3000 or so publications on thiosemicarbazones since 2000 have alluded to this feature. Thiosemicarbazones with potential donor atoms in their structural skeleton fascinate coordination chemists with their versatile chelating behavior. The thiosemicarbazones of aromatic aldehydes and ketones form stable chelates with transition metal cations by utilizing both their sulfur and azomethine nitrogen as donor atoms. They have been shown to possess a diverse range of biological activities including anticancer, antitumor, antibacterial, antiviral, antimalarial and antifungal properties owing to their ability to diffuse through the semipermeable membrane of the cell lines. The enhanced effect may be attributed to the increased lipophilicity of the metal complexes compared to the ligand alone.
Resumo:
The thesis entitled novel 1,3-dipolar cycloaddition reactions of acyclic carbonyl ylides and related chemistry embodies the results of the investigations carried out to explore the reactivity of acyclic carbonyl ylides,generated by the reaction of dicarbomethoxy carbine and aldehydes towards dipolarophiles such as activated styrenes,1,2-and 1,4-quinones. In conclusion ,we have explored the reactivity pattern of acyclic carbonyl ylides derived from dicarbomethoxycarbene and aldehyde towards activated styrenes with a view to develop a stereoselective synthesis of highly substituted tetrahydrofuran derivatives. It was also found that the ylide could be trapped by various 1,2-and 1,4-diones to form dioxolane derivatives. It is noteworthy that the cycloaddition is highly region- and stereoselective. With isatins the ylide preferentially adds to the more electrone deficient carbonyl group making it regiospecific. Hetrocyclic compounds are of pivotal importance in organic chemistry, and enormous efforts have been devoted to develop new methodologies for their synthesis. It is noteworthy in this context that, 1,3-dipolar cycloaddition reaction,otherwise called Huisgen reaction, constitutes one of the most efficient methods for the synthesis of five membered heterocycles. Among the various dipoles, carbonyl ylides have received substiancial attention in recent years largely due to their utility in the synthesis of a wide range of oxygen hetrocycles, which are often found as structural subunits of many bioactive natural products.
Resumo:
Dopamine D2 receptors are involved in ethanol self- administration behavior and also suggested to mediate the onset and offset of ethanol drinking. In the present study, we investigated dopamine (DA) content and Dopamine D2 (DA D2) receptors in the hypothalamus and corpus striatum of ethanol treated rats and aldehyde dehydrogenase (ALDH) activity in the liver and plasma of ethanol treated rats and in vitro hepatocyte cultures. Hypothalamic and corpus striatal DA content decreased significantly (P\0.05, P\0.001 respectively) and homovanillic acid/ dopamine (HVA/DA) ratio increased significantly (P\0.001) in ethanol treated rats when compared to control. Scatchard analysis of [3H] YM-09151-2 binding to DA D2 receptors in hypothalamus showed a significant increase (P\0.001) in Bmax without any change in Kd in ethanol treated rats compared to control. The Kd of DA D2 receptors significantly decreased (P\0.05) in the corpus striatum of ethanol treated rats when compared to control. DA D2 receptor affinity in the hypothalamus and corpus striatum of control and ethanol treated rats fitted to a single site model with unity as Hill slope value. The in vitro studies on hepatocyte cultures showed that 10-5 M and 10-7 M DA can reverse the increased ALDH activity in 10% ethanol treated cells to near control level. Sulpiride, an antagonist of DA D2, reversed the effect of dopamine on 10% ethanol induced ALDH activity in hepatocytes. Our results showed a decreased dopamine concentration with enhanced DA D2 receptors in the hypothalamus and corpus striatum of ethanol treated rats. Also, increased ALDH was observed in the plasma and liver of ethanol treated rats and in vitro hepatocyte cultures with 10% ethanol as a compensatory mechanism for increased aldehyde production due to increased dopamine metabolism. A decrease in dopamine concentration in major brain regions is coupled with an increase in ALDH activity in liver and plasma, which contributes to the tendency for alcoholism. Since the administration of 10-5 M and 10-7 M DA can reverse the increased ALDH activity in ethanol treated cells to near control level, this has therapeutic application to correct ethanol addicts from addiction due to allergic reaction observed in aldehyde accumulation.
Resumo:
The thesis deals with studies on the synthesis, characterisation and catalytic applications of some new transition metal complexes of the Schiff bases derived from 3-hydroxyquinoxaline 2-carboxaldehyde.. Schiff bases which are considered as ‘privileged ligands’ have the ability to stabilize different metals in different oxidation states and thus regulate the performance of metals in a large variety of catalytic transformations. The catalytic activity of the Schiff base complexes is highly dependant on the environment about the metal center and their conformational flexibility. Therefore it is to be expected that the introduction of bulky substituents near the coordination sites might lead to low symmetry complexes with enhanced catalytic properties. With this view new transition metal complexes of Schiff bases derived from 3-hydroxyquinoxaline-2-carboxaldehyde have been synthesised. These Schiff bases have more basic donor nitrogen atoms and the presence of the quinoxaline ring may be presumed to build a favourable topography and electronic environment in the immediate coordination sphere of the metal. The aldehyde was condensed with amines 1,8-diaminonaphthalene, 2,3-diaminomaleonitrile, 1,2-diaminocyclohexane, 2-aminophenol and 4-aminoantipyrine to give the respective Schiff bases. The oxovanadium(IV), copper(II) and ruthenium(II)complexes of these Schiff bases were synthesised and characterised. All the oxovanadium(IV) complexes have binuclear structure with a square pyramidal geometry. Ruthenium and copper form mononuclear complexes with the Schiff base derived from 4- aminoantipyrine while binuclear square planar complexes are formed with the other Schiff bases. The catalytic activity of the copper complexes was evaluated in the hydroxylation of phenol with hydrogen peroxide as oxidant. Catechol and hydroquinone are the major products. Catalytic properties of the oxovanadium(IV) complexes were evaluated in the oxidation of cyclohexene with hydrogen peroxide as the oxidant. Here allylic oxidation products rather than epoxides are formed as the major products. The ruthenium(II) complexes are found to be effective catalysts for the hydrogenation of benzene and toluene. The kinetics of hydrogenation was studied and a suitable mechanism has been proposed.
Resumo:
Ruthenium(III) complexes of the Schiff bases formed by the condensation of polymer bound aldehyde and the amines, such as 1,2-phenylenediamine (PS-opd), 2-aminophenol (PS-ap), and 2-aminobenzimidazole (PS-ab) have been prepared. The magnetic moment, EPR and electronic spectra suggest an octahedral structure for the complexes. The complexes of PS-opd, PS-ap, and PS-ab have been assigned the formula [PS-opdRuCl3(H2O)], [PS-apRuCl2(H2O)2], [PS-ab- RuCl3(H2O)2], respectively. These complexes catalyze oxidation of catechol using H2O2 selectively to o-benzoquinone. The catalytic activity of the complexes is in the order [PS-ab- RuCl3(H2O)2] . [PS-opdRuCl3(H2O)] [PS-apRuCl2(H2O)2]. Mechanism of the catalytic oxidation of catechol by ruthenium( III) complex is suggested to take place through the formation of a ruthenium(II) complex and its subsequent oxidation by H2O2 to the ruthenium(III) complex.
Resumo:
Two novel polystyrene-supported Schiff bases, PSOPD and PSHQAD, were synthesized. A polymerbound aldehyde was condensed with o-phenylenediamine to prepare the Schiff base PSOPD, and a polymer-bound amine was condensed with 3-hydroxyquinoxaline-2-carboxaldehyde to prepare the Schiff base PSHQAD. This article addresses the study of cobalt (II), nickel (II), and copper (II) complexes of these polymer-bound Schiff bases. All the complexes were characterized, and the probable geometry was suggested using elemental analysis, diffuse reflectance ultraviolet, Fourier transform infrared spectroscopy, thermal studies, surface area studies, and magnetic measurements.
Resumo:
Neuronal dopamine and serotonin receptors are widely distributed in the central and the peripheral nervous systems at different levels. Dopaminergic and serotonergic systems have crucial role in aldehyde dehydrogenase regulation Stimulation of autonomic nervous system during ethanol treatment is suggested to be an important factor in regulating the ALDH function. The ALDH enzyme activity was increased in plasma, cerebral cortex, and liver but decreased in cerebellum. The ALDH enzyme affinity was decreased in plasma, brainstem and liver and increased in cerebral cortex and cerebellum. Dopamine and serotonin content decreased in liver and brain regions - cerebral cortex, corpus striatum of ethanol treated rats with an increased HVA/DA, 5-HIAA/5-HT tumover rate. Dopamine content decreased in brainstem with an increased HVA/DA turnover rate and serotonin content decreased with an increased 5-HIAA/5-HT turnover rate in the brainstem of ethanol treated rats compared to control. Serotonin content increased in hypothalamus with a decreased 5-HIAA/5—HT turnover rate where as dopamine content decreased in hypothalamus with an increased HVA/DA tumover rate of ethanol treated rats compared to control.alterations of DA D2 and 5-HTQA receptor function and gene expression in the cerebellum, hypothalamus, corpus striatum, cerebral cortex play an important role in the sympathetic regulation of ALDH enzyme in ethanol addiction. There is a serotonergic and dopaminergic functional regulation of ALDH activity in the brain regions and liver of ethanol treated rats. Gene expression studies of DA D2 and 5'HT2A studies confirm these observations. Perfusion studies using DA, 5-HT and glucose showed ALDH regulatory function. Brain activity measeurement using EEG showed a prominentfrontal brain wave difference. This will have immense clinical significance in the management of ethanol addiction.
Resumo:
The thesis deals with the results of an investigation on the "BIOCHEMICAL GENETICS OF MUGIL CEPHALUS" from Cochin, Madras and Orissa. It is presented under the following major headings: Introduction, Review of Literature, Materials and Methods, Results, Discussions, Conclusions, Recommendations, Summary and References.The introduction gives a brief account of historical and modern back ground on the stock concept in fisheries research and management, followed by the importance and potential role of biochemical genetics in the identification of natural units of fisheries management. In the review of literature published reports relevant to biochemical genetics with special reference to that of general proteins and enzyme systems of fish populations were considered. A detailed account of the source of experimental specimens, mode of collection, transportation, sample extraction, gel preparation/gel electrophoresis, buffer systems, staining procedures of proteins/enzymes, standardization of experiments, interpretation of electrophoretic data using basic formulae etc. are given in the materials and methods section. Four important conclusions were drawn on the basis of the results of the present investigation. Three recommendations were also made on the basis of evaluation of the results.
Resumo:
In the present work different new approaches for the synthesis of Vitamin A are investigated. In these synthetic schemes, all the twenty carbon atoms of the target molecule are derived either fully from components isolated from common essential oils or partially from commercially available materials. By retrosynthetic analysis, Vitamin A molecule can be disconnected into a cyclic and a linear unit. Different methods for the synthesis of the linear and the cyclic components are described. The monoterpenes, geraniol and citral, major constituents of palmarosa and lemongrass oils, have the required basic carbon framework for consideration as starting materials for the synthesis of Vitamin A. The potential of these easily available naturally occurring compounds as promising starting materials for Vitamin A synthesis is demonstrated. Organoselenium and organosulfur mediated functional group transformations for the synthesis of the functionalised conjugated C10 linear components (ie., the dimethyloctatriene derivatives) are reported. The classical approaches as well as the attempted preparation of cyclic C10 and C13 units employed in the present study as intermediates for Vitamin A synthesis are described. The utility of commercially available materials namely 2-acetylbutyrolactone and levulinic acid in -the preparation of C5 intermediates for Vitamin A synthesis is demonstrated.
Resumo:
This thesis deals with the synthesis, characterisation and catalytic activity studies of some new transition metal complexes of the Schiff bases, derived from quinoxaline—2—carboxaldehyde. The model complexes derived from specially designed and synthesised Schiff bases help us to understand the chemistry of biological systems. Schiff bases derived from heterocyclic aldehydes like quinoxaline-2-carboxaldehyde provide great structural diversity during complexation. The Schiff bases synthesised in the present study ' are quinoxaline—2—carboxa.lidene-2-aminophenol (QAP). quinoxaline—2carboxaldehyde semicarbazone (QSC), quinoxaline-2—carboxalidene—o— phenylenediamine (QOD) and quinoxaline-2-carboxalidene-2-furfurylamine (QFA). The elucidation of the structure of these complexes is done using conductance, magnetic susceptibility measurements. infrared, UV—Vis and EPR spectral studies.
Resumo:
White Spot Syndrome Virus (WSSV) is the most devastating disease affecting shrimp culture around the world. Though, considerable progress has been made in the detection and molecular characterization of WSSV in recent years, information pertaining to immune gene expression in shrimps with respect to WSSV infection remains limited. In this context, the present study was undertaken to understand the differential expression of antimicrobial peptide (AMP) genes in the haemocytes of Penaeus monodon in response to WSSV infection on a time-course basis employing semi-quantitative RT-PCR. The present work analyzes the expression profile of six AMP genes (ALF, crustin-1, crustin-2, crustin-3, penaeidin-3 and penaeidin-5), eight WSSV genes (DNA polymerase, endonuclease, immediate early gene, latency related gene, protein kinase, ribonucleotide reductase, thymidine kinase and VP28) and three control genes (18S rRNA, β-actin and ELF) in P. monodon in response to WSSV challenge. Penaeidins were found to be up-regulated during early hours of infection and crustin-3 during late period of infection. However, ALF was found to be up-regulated early to late period of WSSV infection. The present study suggests that AMPs viz. ALF and crustin-3 play an important role in antiviral defense in shrimps. WSSV gene transcripts were detected post-challenge day 1 itself and increased considerably day 5 onwards. Evaluation of the control genes confirmed ELF as the most reliable control gene followed by 18S rRNA and β-actin for gene expression studies in shrimps. This study indicated the role of AMPs in the protection of shrimps against viral infection and their possible control through the up-regulation of AMPs
Resumo:
A simple and facile strategy for the synthesis of highly substituted imidazoles has been developed by multi-component condensation of 1,2-diketone, aldehyde, amine, and ammonium acetate in presence of tetrabutyl ammonium bromide as catalyst
Resumo:
The ability of aroylhydrazones to bind with transition metals is a developing area of research interest and the coordinating properties of hydrazones can be tuned by the appropriate choice of parent aldehyde or ketone and the hydrazide. So in the present work we selected four different aroylhydrazones as principal ligands. Introduction of heterocyclic bases like 1,10-phenanthroline, 2,2′-bipyridine, 3-picoline and pyridine leads to the syntheses of mixed ligand metal chelates which can cause different bonding modes, spectral properties and geometries in coordination compounds. The importance of aroylhydrazones and their complexes in various fields and their interesting coordinating properties stimulate our interest in the investigation of transition metal chelates with four different aroylhydrazones. The aroylhydrazones selected are 4-benzyloxy-2-hydroxybenzaldehyde-4-nitrobenzoylhydrazone dimethylformamide monosolvate, 5-bromo-2-hydroxy-3-methoxybenzaldehyde nicotinoylhydrazone dihydrate methanol monosolvate, 4-diethylamino-2- hydroxybenzaldehyde nicotinoylhydrazone monohydrate and 2-benzoylpyridine- 4-nitrobenzoylhydrazone. The selection of 4-benzyloxy-2-hydroxybenzaldehyde- 4-nitrobenzoylhydrazone was based on the idea of developing ligands having D-π-A general structure, so that the proligand and metal complexes exhibit NLO activity. Hence it is interesting to explore the coordinating capabilities of the synthesized hydrazones and to study the NLO activity of hydrazones and some of the metal complexes.
Resumo:
Diabetes mellitus is a heterogeneous metabolic disorder characterized by hyperglycemia with disturbances in carbohydrate, protein and lipid metabolism resulting from defects in insulin secretion, insulin action or both. Currently there are 387 million people with diabetes worldwide and is expected to affect 592 million people by 2035. Insulin resistance in peripheral tissues and pancreatic beta cell dysfunction are the major challenges in the pathophysiology of diabetes. Diabetic secondary complications (like liver cirrhosis, retinopathy, microvascular and macrovascular complications) arise from persistent hyperglycemia and dyslipidemia can be disabling or even life threatening. Current medications are effective for control and management of hyperglycemia but undesirable effects, inefficiency against secondary complications and high cost are still serious issues in the present prognosis of this disorder. Hence the search for more effective and safer therapeutic agents of natural origin has been found to be highly demanding and attract attention in the present drug discovery research. The data available from Ayurveda on various medicinal plants for treatment of diabetes can efficiently yield potential new lead as antidiabetic agents. For wider acceptability and popularity of herbal remedies available in Ayurveda scientific validation by the elucidation of mechanism of action is very much essential. Modern biological techniques are available now to elucidate the biochemical basis of the effectiveness of these medicinal plants. Keeping this idea the research programme under this thesis has been planned to evaluate the molecular mechanism responsible for the antidiabetic property of Symplocos cochinchinensis, the main ingredient of Nishakathakadi Kashayam, a wellknown Ayurvedic antidiabetic preparation. A general introduction of diabetes, its pathophysiology, secondary complications and current treatment options, innovative solutions based on phytomedicine etc has been described in Chapter 1. The effect of Symplocos cochinchinensis (SC), on various in vitro biochemical targets relevant to diabetes is depicted in Chapter 2 including the preparation of plant extract. Since diabetes is a multifactorial disease, ethanolic extract of the bark of SC (SCE) and its fractions (hexane, dichloromethane, ethyl acetate and 90 % ethanol) were evaluated by in vitro methods against multiple targets such as control of postprandial hyperglycemia, insulin resistance, oxidative stress, pancreatic beta cell proliferation, inhibition of protein glycation, protein tyrosine phosphatase-1B (PTP-1B) and dipeptidyl peptidase-IV (DPPxxi IV). Among the extracts, SCE exhibited comparatively better activity like alpha glucosidase inhibition, insulin dependent glucose uptake (3 fold increase) in L6 myotubes, pancreatic beta cell regeneration in RIN-m5F and reduced triglyceride accumulation in 3T3-L1 cells, protection from hyperglycemia induced generation of reactive oxygen species in HepG2 cells with moderate antiglycation and PTP-1B inhibition. Chemical characterization by HPLC revealed the superiority of SCE over other extracts due to presence of bioactives (beta-sitosterol, phloretin 2’glucoside, oleanolic acid) in addition to minerals like magnesium, calcium, potassium, sodium, zinc and manganese. So SCE has been subjected to oral sucrose tolerance test (OGTT) to evaluate its antihyperglycemic property in mild diabetic and diabetic animal models. SCE showed significant antihyperglycemic activity in in vivo diabetic models. Chapter 3 highlights the beneficial effects of hydroethanol extract of Symplocos cochinchinensis (SCE) against hyperglycemia associated secondary complications in streptozotocin (60 mg/kg body weight) induced diabetic rat model. Proper sanction had been obtained for all the animal experiments from CSIR-CDRI institutional animal ethics committee. The experimental groups consist of normal control (NC), N + SCE 500 mg/kg bwd, diabetic control (DC), D + metformin 100 mg/kg bwd, D + SCE 250 and D + SCE 500. SCEs and metformin were administered daily for 21 days and sacrificed on day 22. Oral glucose tolerance test, plasma insulin, % HbA1c, urea, creatinine, aspartate aminotransferase (AST), alanine aminotransferase (ALT), albumin, total protein etc. were analysed. Aldose reductase (AR) activity in the eye lens was also checked. On day 21, DC rats showed significantly abnormal glucose response, HOMA-IR, % HbA1c, decreased activity of antioxidant enzymes and GSH, elevated AR activity, hepatic and renal oxidative stress markers compared to NC. DC rats also exhibited increased level of plasma urea and creatinine. Treatment with SCE protected from the deleterious alterations of biochemical parameters in a dose dependent manner including histopathological alterations in pancreas. SCE 500 exhibited significant glucose lowering effect and decreased HOMA-IR, % HbA1c, lens AR activity, and hepatic, renal oxidative stress and function markers compared to DC group. Considerable amount of liver and muscle glycogen was replenished by SCE treatment in diabetic animals. Although metformin showed better effect, the activity of SCE was very much comparable with this drug. xxii The possible molecular mechanism behind the protective property of S. cochinchinensis against the insulin resistance in peripheral tissue as well as dyslipidemia in in vivo high fructose saturated fat diet model is described in Chapter 4. Initially animal were fed a high fructose saturated fat (HFS) diet for a period of 8 weeks to develop insulin resistance and dyslipidemia. The normal diet control (ND), ND + SCE 500 mg/kg bwd, high fructose saturated fat diet control (HFS), HFS + metformin 100 mg/kg bwd, HFS + SCE 250 and HFS + SCE 500 were the experimental groups. SCEs and metformin were administered daily for the next 3 weeks and sacrificed at the end of 11th week. At the end of week 11, HFS rats showed significantly abnormal glucose and insulin tolerance, HOMA-IR, % HbA1c, adiponectin, lipid profile, liver glycolytic and gluconeogenic enzyme activities, liver and muscle triglyceride accumulation compared to ND. HFS rats also exhibited increased level of plasma inflammatory cytokines, upregulated mRNA level of gluconeogenic and lipogenic genes in liver. HFS exhibited the increased expression of GLUT-2 in liver and decreased expression of GLUT-4 in muscle and adipose. SCE treatment also preserved the architecture of pancreas, liver, and kidney tissues. Treatment with SCE reversed the alterations of biochemical parameters, improved insulin sensitivity by modifying gene expression in liver, muscle and adipose tissues. Overall results suggest that SC mediates the antidiabetic activity mainly via alpha glucosidase inhibition, improved insulin sensitivity, with antiglycation and antioxidant activities.