19 resultados para Abrupt drop
em Cochin University of Science
Resumo:
Department of Physics, Cochin University of Science and Technology
Resumo:
Acrylonitrile butadiene rubber (NBR) matrix was reinforced with different levels of short nylon fiber loading. Cure characteristics and mechanical properties of composites in longitudinal and transverse directions have been studied. Cure time was reduced while processability, as indicated by the minimum torque, was marginally reduced with increase in fiber loading. Tensile and tear properties improved with fiber concentration and the values were higher in longitudinal direction of fiber orientation. Abrasion resistance, resilience and compression set were increased in presence of fibers. Elongation at break values showed a drastic drop on introduction of fibers. Heat build up was higher for composites.
Resumo:
The study aims to the hydrodynamic characteristics of swirling fluidized bed, using large particles (Geldart D-type) selected from locally available agricultural produce (coffee beans and black pepper). The important variables considered in the present study include percentage area of opening, angle of air injection and the percentage useful area of the distributor. A total of seven distributors have been designed and fabricated for a bed column of 300 mm, namely single row vane type distributors (15˚ and 20˚ vane angle), inclined hole type distributors (15˚ and 20˚ vane angle) and perforated plate distributors. The useful area of distributor of single row vane type, three now vane-type and inclined hole-type distributors are respectively 64%,91% and 94%. The hydrodynamic parameters considered in the present study include distributor pressure drop, air velocity, minimum fluidizing velocity, bed pressure drop, bed height and the bed behaviour. It has been observed that, in general, the distributor pressure drop decreases with an increase in the percentage area of opening, Further, and increase in the area of opening above 17% will not considerably reduce the distributor pressure drop. In the present study, for the distributor with an area of opening 17%, and corresponding to the maximum measured superficial velocity of 4.33 m/s, the distributor pressure drop obtained was 55.25mm of water. The study on the bed behavior revealed that, in a swirling fluidized bed, once swirl motion starts, the bed pressure drop increases with superficial velocity in the outer region and it decreases in the inner region. This means that, with higher superficial velocity, the air might get by-passed through the inner boundary of the bed (around the cone). So, depending on the process for which the bed is used, the maximum superficial velocity is to be limited to have an optimum bed performance.
Resumo:
The present work is an attempt to probe the elastic properties in some dielectric ceramics, by using ultrasonic pulse echo overlap technique. The base Ba6-xSm8+2xTi18O54 and Ca5Nb2TiO12 are very important dielectrics ceramics used for microwave communication as well as for substrate materials. Ultrasonic is one of the most widely used and powerful techniques to measure elastic properties of solids. The ultrasonic technique is nondestructive in nature and the measurements are relatively straightforward to perform. One unique advantantage of the ultrasonic technique is that both static and dynamic properties can be measured simultaneously. The velocity and attenuation coefficients of the ultrasonic waves propagating through a medium are related to the microscopic structure of the material and they provide valuable information about the structural changes in the system. Among the various ultrasonic techniques, the pulse echo overlap method is the most accurate and precise one. In the present case the decreased elastic properties of Cas-XMg,Nb2TiO12 and Cas-,ZnNb2TiO12 ceramics can be attributed to their mixture phases beyond x = 1. Moreover, the abrupt change in elastic properties observed for x >1 can also be correlated to the structural transformation of the materials from their phase pure form to mixture phases for higher extent of substitution of the concerned material . Ca4(ANb2Ti)012 (A = Mg, Zn) is the strongest compound with the maximum values for elastic properties . This could be due to the possible substitution of Mg/Zn ions with lesser radius [25] than Ca2+ in perovskite B-site of Ca(Cali4Nb2i4Tili4) O3 material to contribute more ordering and symmetry to the system [20]. All other compositions (x > 1) contain mixed-phases and for such mixed-phase samples, the mechanical properties are difficult to explain.
Resumo:
A novel optical add-drop multiplexer (OADM) based on the Mach-Zelauler interferometer (MZI) and the fiber Bragg grating (FBG) is proposed for the first tittle to the authors ' knowledge. In the structure, the Mach-Zehnder interferometer acts as an optical switch. The principle of the OADM is analyzed in this paper. The OADM can add/drop one of the multi-input channels or pass the channel directly by adjusting the difference of the two arms of the interferometer. The channel isolation is more than 20 dB
Resumo:
Increase in sea surface temperature with global warming has an impact on coastal upwelling. Past two decades (1988 to 2007) of satellite observed sea surface temperatures and space borne scatterometer measured winds have provided an insight into the dynamics of coastal upwelling in the southeastern Arabian Sea, in the global warming scenario. These high resolution data products have shown inconsistent variability with a rapid rise in sea surface temperature between 1992 and 1998 and again from 2004 to 2007. The upwelling indices derived from both sea surface temperature and wind have shown that there is an increase in the intensity of upwelling during the period 1998 to 2004 than the previous decade. These indices have been modulated by the extreme climatic events like El–Nino and Indian Ocean Dipole that happened during 1991–92 and 1997–98. A considerable drop in the intensity of upwelling was observed concurrent with these events. Apart from the impact of global warming on the upwelling, the present study also provides an insight into spatial variability of upwelling along the coast. Noticeable fact is that the intensity of offshore Ekman transport off 8oN during the winter monsoon is as high as that during the usual upwelling season in summer monsoon. A drop in the meridional wind speed during the years 2005, 2006 and 2007 has resulted in extreme decrease in upwelling though the zonal wind and the total wind magnitude are a notch higher than the previous years. This decrease in upwelling strength has resulted in reduced productivity too.
Resumo:
The measurement of global precipitation is of great importance in climate modeling since the release of latent heat associated with tropical convection is one of the pricipal driving mechanisms of atmospheric circulation.Knowledge of the larger-scale precipitation field also has important potential applications in the generation of initial conditions for numerical weather prediction models Knowledge of the relationship between rainfall intensity and kinetic energy, and its variations in time and space is important for erosion prediction. Vegetation on earth also greatly depends on the total amount of rainfall as well as the drop size distribution (DSD) in rainfall.While methods using visible,infrared, and microwave radiometer data have been shown to yield useful estimates of precipitation, validation of these products for the open ocean has been hampered by the limited amount of surface rainfall measurements available for accurate assessement, especially for the tropical oceans.Surface rain fall measurements(often called the ground truth)are carried out by rain gauges working on various principles like weighing type,tipping bucket,capacitive type and so on.The acoustic technique is yet another promising method of rain parameter measurement that has many advantages. The basic principle of acoustic method is that the droplets falling in water produce underwater sound with distinct features, using which the rainfall parameters can be computed. The acoustic technique can also be used for developing a low cost and accurate device for automatic measurement of rainfall rate and kinetic energy of rain.especially suitable for telemetry applications. This technique can also be utilized to develop a low cost Disdrometer that finds application in rainfall analysis as well as in calibration of nozzles and sprinklers. This thesis is divided into the following 7 chapters, which describes the methodology adopted, the results obtained and the conclusions arrived at.
Resumo:
Glucoamylase was immobilized on acid activated montmorillonite clay via two different procedures namely adsorption and covalent binding. The immobilized enzymes were characterized by XRD, NMR and N2 adsorption measurements and the activity of immobilized glucoamylase for starch hydrolysis was determined in a batch reactor. XRD shows intercalation of enzyme into the clay matrix during both immobilization procedures. Intercalation occurs via the side chains of the amino acid residues, the entire polypeptide backbone being situated at the periphery of the clay matrix. 27Al NMR studies revealed the different nature of interaction of enzyme with the support for both immobilization techniques. N2 adsorption measurements indicated a sharp drop in surface area and pore volume for the covalently bound glucoamylase that suggested severe pore blockage. Activity studies were performed in a batch reactor. The adsorbed and covalently bound glucoamylase retained 49% and 66% activity of the free enzyme respectively. They showed enhanced pH and thermal stabilities. The immobilized enzymes also followed Michaelis–Menten kinetics. Km was greater than the free enzyme that was attributed to an effect of immobilization. The immobilized preparations demonstrated increased reusability as well as storage stability.
Resumo:
The acoustic signals generated in solids due to interaction with pulsed laser beam is used to determine the ablation threshold of bulk polymer samples of teflon (polytetrafluoroethylene) and nylon under the irradiation from a Q-switched Nd:YAG laser at 1.06µm wavelength. A suitably designed piezoelectric transducer is employed for the detection of photoacoustic (PA) signals generated in this process. It has been observed that an abrupt increase in the amplitude of the PA signal occurs at the ablation threshold. Also there exist distinct values for the threshold corresponding to different mechanisms operative in producing damages like surface morphology, bond breaking and melting processes at different laser energy densities.
Resumo:
Machine tool chatter is an unfavorable phenomenon during metal cutting, which results in heavy vibration of cutting tool. With increase in depth of cut, the cutting regime changes from chatter-free cutting to one with chatter. In this paper, we propose the use of permutation entropy (PE), a conceptually simple and computationally fast measurement to detect the onset of chatter from the time series using sound signal recorded with a unidirectional microphone. PE can efficiently distinguish the regular and complex nature of any signal and extract information about the dynamics of the process by indicating sudden change in its value. Under situations where the data sets are huge and there is no time for preprocessing and fine-tuning, PE can effectively detect dynamical changes of the system. This makes PE an ideal choice for online detection of chatter, which is not possible with other conventional nonlinear methods. In the present study, the variation of PE under two cutting conditions is analyzed. Abrupt variation in the value of PE with increase in depth of cut indicates the onset of chatter vibrations. The results are verified using frequency spectra of the signals and the nonlinear measure, normalized coarse-grained information rate (NCIR).
Resumo:
The thesis presented here unveils an experimental study of the hydrodynamic characteristics of swirling fluidized bed viz. pressure drop across the distributor and the bed, minimum fluidizing velocity, bed behaviour and angle of air injection. In swirling fluidized bed the air is admitted to the bed at an angle 'Ѳ' to the horizontal. The vertical component of the velocity v sin Ѳ causes fluidization and the horizontal component v cos Ѳ contributes to swirl motion of the bed material.The study was conducted using spherical particles having sizes 3.2 mm, 5.5 mm & 7.4 mm as the bed materials. Each of these particles was made from high density polyethylene, nylon and acetal having relative densities of 0.93, 1.05 and 1.47 respectively.The experiments were conducted using conidour type distributors having four rows of slits. Altogether four distributors having angles of air injection (Φ)- 0°, 5°, 10° & 15° were designed and fabricated for the study. The total number of slits in each distributor was 144. The area of opening was 6220 mm2 making the percentage area of opening to 9.17. But the percentage useful area of opening of the distributor was 96.The experiments on the variation of distributor pressure drop with superficial velocity revealed that the distributor pressure drop decreases with angle of air injection. Investigations related to bed hydrodynamics were conducted using 2.5 kg of bed material. The bed pressure drop measurements were made along the radial direction of the distributor at distances of 60 mm, 90 mm, 120 mm & 150 mm from the centre of the distributor. It was noticed that after attaining minimum fluidizing velocity, the bed pressure drop increases along the radial direction of the distributor. But at a radial distance of 90 mm from the distributor centre, after attaining minimum fluidizing velocity the bed pressure drop remains almost constant. It was also observed that the bed pressure drop varies inversely with particle size as well as particle density.An attempt was made to determine the effect of various parameters on minimum fluidizing velocity. It was noticed that the minimum fluidizing velocity varies directly with angle of air injection (Φ), particle size and particle density.The study on the bed behaviour showed that the superficial velocity required for initiating various bed phenomena (such as swirl motion and separation of particles from the cone at the centre) increase with increase in particle size as well as particle density. It was also observed that the particle size and particle density directly influence the superficial velocity required for various regimes of bed behaviour such as linear variation of bed pressure drop, constant bed pressure drop and sudden increase or decrease in bed pressure drop.Experiments were also performed to study the effect of angle of air injection (Φ). It was noticed that the bed pressure drop decreases with angle of air injection. It was also noticed that the angle of air injection directly influence the superficial velocity required for initiating various bed phenomena as well as the various regimes of bed behaviour.
Resumo:
This doctoral thesis addresses the growing concern about the significant changes in the climatic and weather patterns due to the aerosol loading that have taken place in the Indo Gangetic Plain(IGP)which includes most of the Northern Indian region. The study region comprises of major industrial cities in India (New Delhi, Kanpur, Allahabad, Jamshedpur and Kolkata). Northern and central parts of India are one of the most thickly populated areas in the world and have the most intensely farmed areas. Rapid increase in population and urbanization has resulted in an abrupt increase in aerosol concentrations in recent years. The IGP has a major source of coal; therefore most of the industries including numerous thermal power plants that run on coal are located around this region. They inject copious amount of aerosols into the atmosphere. Moreover, the transport of dust aerosols from arid locations is prevalent during the dry months which increase the aerosol loading in theatmosphere. The topography of the place is also ideal for the congregation of aerosols. It is bounded by the Himalayas in the north, Thar Desert in the west, the Vindhyan range in the south and Brahmaputra ridge in the east. During the non‐monsoon months (October to May) the weather in the location is dry with very little rainfall. Surface winds are weak during most of the time in this dry season. The aerosols that reach the location by means of long distance transport and from regional sources get accumulated under these favourable conditions. The increase in aerosol concentration due to the complex combination of aerosol transport and anthropogenic factors mixed with the contribution from the natural sources alters the optical properties and the life time of clouds in the region. The associated perturbations in radiative balance have a significant impact on the meteorological parameters and this in turn determines the precipitation forming process. Therefore, any change in weather which disturbs the normal hydrological pattern is alarming in the socio‐economic point of view. Hence, the main focus of this work is to determine the variation in transport and distribution of aerosols in the region and to understand the interaction of these aerosols with meteorological parameters and cloud properties.
Resumo:
This work identifies the importance of plenum pressure on the performance of the data centre. The present methodology followed in the industry considers the pressure drop across the tile as a dependant variable, but it is shown in this work that this is the only one independent variable that is responsible for the entire flow dynamics in the data centre, and any design or assessment procedure must consider the pressure difference across the tile as the primary independent variable. This concept is further explained by the studies on the effect of dampers on the flow characteristics. The dampers have found to introduce an additional pressure drop there by reducing the effective pressure drop across the tile. The effect of damper is to change the flow both in quantitative and qualitative aspects. But the effect of damper on the flow in the quantitative aspect is only considered while using the damper as an aid for capacity control. Results from the present study suggest that the use of dampers must be avoided in data centre and well designed tiles which give required flow rates must be used in the appropriate locations. In the present study the effect of hot air recirculation is studied with suitable assumptions. It identifies that, the pressure drop across the tile is a dominant parameter which governs the recirculation. The rack suction pressure of the hardware along with the pressure drop across the tile determines the point of recirculation in the cold aisle. The positioning of hardware in the racks play an important role in controlling the recirculation point. The present study is thus helpful in the design of data centre air flow, based on the theory of jets. The air flow can be modelled both quantitatively and qualitatively based on the results.
Resumo:
In spite of the far longed practices of technical analysis by many participants in Indian stock market, none have arrived at the exact position of technical analysis as a tool for foretelling share prices. There is no evidence supporting that one has established its definite role in predicting the behaviour of share price and also to see the extent of validity (how far reliable) of technical tools in Indian stock market. The problem is the vacuum in the arena of securities market analysis where an unrecognised tool is practised, i.e., whether to hold on to technical analysis or to drop it. Again, as already stated in this chapter, its validity need not continue forever. It may become futile as happened in developed markets. Continuous practice of a tool, which is valid only during discontinuous times is also an error. The efficacy of different market phenomena in terms of their ability to foretell the extent and direction of the price movements and reliability thereof remain as not yet proved in. This requires further study in this area so that this controversy may be settled. A solution to the problem requires enquiring and establishing the applicability of technical analysis, if any, there is in the Indian stock market. The study has the following two broad objectives for the purpose of confirming the applicability, if any, of technical analysis in the Indian stock market. The first objective is to ascertain the current validity of ‘traditional holding with respect to patterns’ and the second objective is to ascertain the ‘consistent superiority’, if any, of technical indicators over non-signal strategies in return generation. The study analyses the five patterns, which are widely known and commonly found in publications. They are: (1) Symmetrical Triangles, (2) Rising Wedges, (3) Falling Wedges, (4) Head and Shoulders Top and (5) Head and Shoulders Bottom.
Resumo:
Investigations on the design and development of certain new hollow dielectric hom antennas of rectangular cross section have been carried out. The main shortcoming of the existing ordinary hollow dielectric hom antenna (HDH) is the abrupt discontinuity at the feed-end. A new launching technique using a dielectric rod is introduced to overcome this limitation. Also a strip loading technique is employed for further modification of the antenna. Radiation parameters of new I-IDH antennas of Eplane sectoral, H-plane sectoral and pyramidal types were studied and are found to be very attractive. Theoretical approach based on Marcatili’s principle and two aperture theory along with diffraction theory and image theory is used to support the experimental findings. The HDH is considered as solid horn of effective dielectric constant and the aperture field is evaluated. The antenna is excited by the open waveguide in the dominant TE1o mode and so the existence of any hybrid mode is mled-out. The theoretical results are observed to be in good agreement with the experimental results.