15 resultados para 340402 Econometric and Statistical Methods
em Cochin University of Science
Resumo:
The preceding discussion and review of literature show that studies on gear selectivity have received great attention, while gear efficiency studies do not seem to have received equal consideration. In temperate waters, fishing industry is well organised and relatively large and well equipped vessels and gear are used for commercial fishing and the number of species are less; whereas in tropics particularly in India, small scale fishery dominates the scene and the fishery is multispecies operated upon by nmltigear. Therefore many of the problems faced in India may not exist in developed countries. Perhaps this would be the reason for the paucity of literature on the problems in estimation of relative efficiency. Much work has been carried out in estimating relative efficiency (Pycha, 1962; Pope, 1963; Gulland, 1967; Dickson, 1971 and Collins, 1979). The main subject of interest in the present thesis is an investigation into the problems in the comparison of fishing gears. especially in using classical test procedures with special reference to the prevailing fishing practices (that is. with reference to the catch data generated by the existing system). This has been taken up with a view to standardizing an approach for comparing the efficiency of fishing gear. Besides this, the implications of the terms ‘gear efficiency‘ and ‘gear selectivity‘ have been examined and based on the commonly used selectivity model (Holt, 1963), estimation of the ratio of fishing power of two gear has been considered. An attempt to determine the size of fish for which a gear is most efficient.has also been made. The work has been presented in eight chapters
Resumo:
The overall focus of the thesis involves the International trade and cochin port a historical and statistical analysis 1881-1980.Analysing the trend of exports and imports through cochin port during the course of the last hundred years .This analysis has brought to light some very pertinent facts which , in our opinion,deserve serious consideration of the policy makers,the partise involved in trade and those who are interested in the development of the cochin port.Our study is restricted to twelve commodities -ten commodities of exports and two commodities of imports.The study reveals that the commodities that were exported from cochin are subjected to fluctuations -some mild and others wild. The projections only indicate the potential and unless we are very cautious the chance will be taken away by our competitors .With reference to the development of the port in particular and the states economy in general we would like to make a suggestion .This suggestion relates to declaring cochin as a free port .This will go a long way in the develppment of the port and the state's economy.The sooner it is done the better for the port and the state.
Resumo:
Some investigations on the spectral and statistical characteristics of deep water waves are available for Indian waters. But practically no systematic investigation on the shallow water wave spectral and probabilistic characteristics is made for any part of the Indian coast except for a few restricted studies. Hence a comprehensive study of the shallow water wave climate and their spectral and statistical characteristics for a location (Alleppey) along the southwest coast of India is undertaken based on recorded data. The results of the investigation are presented in this thesis.The thesis comprises of seven chapters
Resumo:
The work is intended to study the following important aspects of document image processing and develop new methods. (1) Segmentation ofdocument images using adaptive interval valued neuro-fuzzy method. (2) Improving the segmentation procedure using Simulated Annealing technique. (3) Development of optimized compression algorithms using Genetic Algorithm and parallel Genetic Algorithm (4) Feature extraction of document images (5) Development of IV fuzzy rules. This work also helps for feature extraction and foreground and background identification. The proposed work incorporates Evolutionary and hybrid methods for segmentation and compression of document images. A study of different neural networks used in image processing, the study of developments in the area of fuzzy logic etc is carried out in this work
Resumo:
The characterization and grading of glioma tumors, via image derived features, for diagnosis, prognosis, and treatment response has been an active research area in medical image computing. This paper presents a novel method for automatic detection and classification of glioma from conventional T2 weighted MR images. Automatic detection of the tumor was established using newly developed method called Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA).Statistical Features were extracted from the detected tumor texture using first order statistics and gray level co-occurrence matrix (GLCM) based second order statistical methods. Statistical significance of the features was determined by t-test and its corresponding p-value. A decision system was developed for the grade detection of glioma using these selected features and its p-value. The detection performance of the decision system was validated using the receiver operating characteristic (ROC) curve. The diagnosis and grading of glioma using this non-invasive method can contribute promising results in medical image computing
Resumo:
Study on variable stars is an important topic of modern astrophysics. After the invention of powerful telescopes and high resolving powered CCD’s, the variable star data is accumulating in the order of peta-bytes. The huge amount of data need lot of automated methods as well as human experts. This thesis is devoted to the data analysis on variable star’s astronomical time series data and hence belong to the inter-disciplinary topic, Astrostatistics. For an observer on earth, stars that have a change in apparent brightness over time are called variable stars. The variation in brightness may be regular (periodic), quasi periodic (semi-periodic) or irregular manner (aperiodic) and are caused by various reasons. In some cases, the variation is due to some internal thermo-nuclear processes, which are generally known as intrinsic vari- ables and in some other cases, it is due to some external processes, like eclipse or rotation, which are known as extrinsic variables. Intrinsic variables can be further grouped into pulsating variables, eruptive variables and flare stars. Extrinsic variables are grouped into eclipsing binary stars and chromospheri- cal stars. Pulsating variables can again classified into Cepheid, RR Lyrae, RV Tauri, Delta Scuti, Mira etc. The eruptive or cataclysmic variables are novae, supernovae, etc., which rarely occurs and are not periodic phenomena. Most of the other variations are periodic in nature. Variable stars can be observed through many ways such as photometry, spectrophotometry and spectroscopy. The sequence of photometric observa- xiv tions on variable stars produces time series data, which contains time, magni- tude and error. The plot between variable star’s apparent magnitude and time are known as light curve. If the time series data is folded on a period, the plot between apparent magnitude and phase is known as phased light curve. The unique shape of phased light curve is a characteristic of each type of variable star. One way to identify the type of variable star and to classify them is by visually looking at the phased light curve by an expert. For last several years, automated algorithms are used to classify a group of variable stars, with the help of computers. Research on variable stars can be divided into different stages like observa- tion, data reduction, data analysis, modeling and classification. The modeling on variable stars helps to determine the short-term and long-term behaviour and to construct theoretical models (for eg:- Wilson-Devinney model for eclips- ing binaries) and to derive stellar properties like mass, radius, luminosity, tem- perature, internal and external structure, chemical composition and evolution. The classification requires the determination of the basic parameters like pe- riod, amplitude and phase and also some other derived parameters. Out of these, period is the most important parameter since the wrong periods can lead to sparse light curves and misleading information. Time series analysis is a method of applying mathematical and statistical tests to data, to quantify the variation, understand the nature of time-varying phenomena, to gain physical understanding of the system and to predict future behavior of the system. Astronomical time series usually suffer from unevenly spaced time instants, varying error conditions and possibility of big gaps. This is due to daily varying daylight and the weather conditions for ground based observations and observations from space may suffer from the impact of cosmic ray particles. Many large scale astronomical surveys such as MACHO, OGLE, EROS, xv ROTSE, PLANET, Hipparcos, MISAO, NSVS, ASAS, Pan-STARRS, Ke- pler,ESA, Gaia, LSST, CRTS provide variable star’s time series data, even though their primary intention is not variable star observation. Center for Astrostatistics, Pennsylvania State University is established to help the astro- nomical community with the aid of statistical tools for harvesting and analysing archival data. Most of these surveys releases the data to the public for further analysis. There exist many period search algorithms through astronomical time se- ries analysis, which can be classified into parametric (assume some underlying distribution for data) and non-parametric (do not assume any statistical model like Gaussian etc.,) methods. Many of the parametric methods are based on variations of discrete Fourier transforms like Generalised Lomb-Scargle peri- odogram (GLSP) by Zechmeister(2009), Significant Spectrum (SigSpec) by Reegen(2007) etc. Non-parametric methods include Phase Dispersion Minimi- sation (PDM) by Stellingwerf(1978) and Cubic spline method by Akerlof(1994) etc. Even though most of the methods can be brought under automation, any of the method stated above could not fully recover the true periods. The wrong detection of period can be due to several reasons such as power leakage to other frequencies which is due to finite total interval, finite sampling interval and finite amount of data. Another problem is aliasing, which is due to the influence of regular sampling. Also spurious periods appear due to long gaps and power flow to harmonic frequencies is an inherent problem of Fourier methods. Hence obtaining the exact period of variable star from it’s time series data is still a difficult problem, in case of huge databases, when subjected to automation. As Matthew Templeton, AAVSO, states “Variable star data analysis is not always straightforward; large-scale, automated analysis design is non-trivial”. Derekas et al. 2007, Deb et.al. 2010 states “The processing of xvi huge amount of data in these databases is quite challenging, even when looking at seemingly small issues such as period determination and classification”. It will be beneficial for the variable star astronomical community, if basic parameters, such as period, amplitude and phase are obtained more accurately, when huge time series databases are subjected to automation. In the present thesis work, the theories of four popular period search methods are studied, the strength and weakness of these methods are evaluated by applying it on two survey databases and finally a modified form of cubic spline method is intro- duced to confirm the exact period of variable star. For the classification of new variable stars discovered and entering them in the “General Catalogue of Vari- able Stars” or other databases like “Variable Star Index“, the characteristics of the variability has to be quantified in term of variable star parameters.
Resumo:
This work envisages the fermentation of prawn shell waste into a more nutritious product with simpler components for application as a feed ingredient in aquaculture. This product would be a rich source of protein along with chitin, minerals, vitamins and N-acetyl glucosamine. A brief description of the various processing (chemical and bioprocess) methods employed for chitin, chitosan and single sell protein preparations from shell waste. It deals with the isolation of micro flora associated with prawn shell degradation. It describes the methods adopted for fermentation of prawn shell degradation and fermentation of prawn shell waste with the selected highly chitinoclastic strains. The comparison of SSF and SmF for each selected strain in terms of enrichment of protein, lipid and carbohydrate in the fermented product was done. Detailed analysis of product quality is discussed. The feed for mulation and feeding experiment explained in detail. Statistical analysis of various biogrowth parameters was done with Duncan’s multiple range test. Very briefly explains 28 days of feeding experiment. A method for the complete utilization of shell waste explains with the help of experiments.
Resumo:
The present work is an attempt to understand the characteristics of the upper troposphere and lower stratosphere over the Asian summer monsoon region, more specifically over the Indian subcontinent. Mainly three important parameters are taken such as zonal wind, temperature and ozone over the UT/LS of the Asian summer monsoon region. It made a detailed study of its interannual variability and characteristics of theses parameters during the Indian summer monsoon period. Monthly values of zonal wind and temperature from the NCEP/NCAR reanalysis for the period 1960-2002 are used for the present study. Also the daily overpass total ozone data for the 12 Indian stations (from low latitude to high latitudes) from the TOMS Nimbus 7 satellite for the period 1979 to 1992 were also used to understand the total ozone variation over the Indian region. The study reveals that if QBO phases in the stratosphere is easterly or weak westerly then the respective monsoon is found to be DRY or below Normal . On the other hand, if the phase is westerly or weak easterly the respective Indian summer monsoon is noted as a WET year. This connection of stratospheric QBO phases and Indian summer monsoon gives more insight in to the long-term predictions of Indian summer monsoon rainfall. Wavelet analysis and EOF methods are the two advanced statistical techniques used in the present study to explore more information of the zonal wind that from the smaller scale to higher scale variability over the Asian summer monsoon region. The interannual variability of temperature for different stratospheric and tropospheric levels over the Asian summer monsoon region have been studied. An attempt has been made to understand the total ozone characteristics and its interannual variablilty over 12 Indian stations spread from south latitudes to north latitudes. Finally it found that the upper troposphere and lower stratosphere contribute significantly to monsoon variability and climate changes. It is also observed that there exists a link between the stratospheric QBO and Indian summer monsoon
Resumo:
Marine fungi remain totally unexplored as a source of industrial enzyme and prospective applications. Further tannase production by a marine organism has so far not been established. The primary objective of this study included the evaluation of the potential of Aspergillus awamori isolated from sea water as part of an earlier study and available in the culture collection of the Microbial technology laboratory for tannase production through different fermentation methods, optimization of bioprocess variables by statistical methods, purification and characterization of the enzyme, genetic study, and assessment of its potential applications.
Resumo:
The present study focused on the quality of rainwater at various land use locations and its variations on interaction with various domestic rainwater harvesting systems.Sampling sites were selected based upon the land use pattern of the locations and were classified as rural, urban, industrial and sub urban. Rainwater samples were collected from the south west monsoon of May 2007 to north east monsoon of October 2008, from four sampling sites namely Kothamangalam, Emakulam, Eloor and Kalamassery, in Ernakulam district of the State of Kerala, which characterized typical rural, urban, industrial and suburban locations respectively. Rain water samples at various stages of harvesting were also collected. The samples were analyzed according to standard procedures and their physico-chemical and microbiological parameters were determined. The variations of the chemical composition of the rainwater collected were studied using statistical methods. It was observed that 17.5%, 30%, 45.8% and 12.1% of rainwater samples collected at rural, urban, industrial and suburban locations respectively had pH less than 5.6, which is considered as the pH of cloud water at equilibrium with atmospheric CO,.Nearly 46% of the rainwater samples were in acidic range in the industrial location while it was only 17% in the rural location. Multivariate statistical analysls was done using Principal Component Analysis, and the sources that inf1uence the composition of rainwater at each locations were identified .which clearly indicated that the quality of rain water is site specific and represents the atmospheric characteristics of the free fall The quality of harvested rainwater showed significant variations at different stages of harvesting due to deposition of dust from the roof catchment surface, leaching of cement constituents etc. Except the micro biological quality, the harvested rainwater satisfied the Indian Standard guide lines for drinking water. Studies conducted on the leaching of cement constituents in water concluded that tanks made with ordinary portland cement and portland pozzolana cement could be safely used for storage of rain water.
Resumo:
The thesis has covered various aspects of modeling and analysis of finite mean time series with symmetric stable distributed innovations. Time series analysis based on Box and Jenkins methods are the most popular approaches where the models are linear and errors are Gaussian. We highlighted the limitations of classical time series analysis tools and explored some generalized tools and organized the approach parallel to the classical set up. In the present thesis we mainly studied the estimation and prediction of signal plus noise model. Here we assumed the signal and noise follow some models with symmetric stable innovations.We start the thesis with some motivating examples and application areas of alpha stable time series models. Classical time series analysis and corresponding theories based on finite variance models are extensively discussed in second chapter. We also surveyed the existing theories and methods correspond to infinite variance models in the same chapter. We present a linear filtering method for computing the filter weights assigned to the observation for estimating unobserved signal under general noisy environment in third chapter. Here we consider both the signal and the noise as stationary processes with infinite variance innovations. We derived semi infinite, double infinite and asymmetric signal extraction filters based on minimum dispersion criteria. Finite length filters based on Kalman-Levy filters are developed and identified the pattern of the filter weights. Simulation studies show that the proposed methods are competent enough in signal extraction for processes with infinite variance.Parameter estimation of autoregressive signals observed in a symmetric stable noise environment is discussed in fourth chapter. Here we used higher order Yule-Walker type estimation using auto-covariation function and exemplify the methods by simulation and application to Sea surface temperature data. We increased the number of Yule-Walker equations and proposed a ordinary least square estimate to the autoregressive parameters. Singularity problem of the auto-covariation matrix is addressed and derived a modified version of the Generalized Yule-Walker method using singular value decomposition.In fifth chapter of the thesis we introduced partial covariation function as a tool for stable time series analysis where covariance or partial covariance is ill defined. Asymptotic results of the partial auto-covariation is studied and its application in model identification of stable auto-regressive models are discussed. We generalize the Durbin-Levinson algorithm to include infinite variance models in terms of partial auto-covariation function and introduce a new information criteria for consistent order estimation of stable autoregressive model.In chapter six we explore the application of the techniques discussed in the previous chapter in signal processing. Frequency estimation of sinusoidal signal observed in symmetric stable noisy environment is discussed in this context. Here we introduced a parametric spectrum analysis and frequency estimate using power transfer function. Estimate of the power transfer function is obtained using the modified generalized Yule-Walker approach. Another important problem in statistical signal processing is to identify the number of sinusoidal components in an observed signal. We used a modified version of the proposed information criteria for this purpose.
Resumo:
In the present thesis entitled” Implications of Hydrobiology and Nutrient dynamics on Trophic structure and Interactions in Cochin backwaters”, an attempt has been made to assess the influence of general hydrography, nutrients and other environmental factors on the abundance, distribution and trophic interactions in Cochin backwater system. The study was based on five seasonal sampling campaigns carried out at 15 stations spread along the Cochin backwater system. The thesis is presented in the following 5 chapters. Salient features of each chapter are summarized below: Chapter 1- General Introduction: Provides information on the topic of study, environmental factors, back ground information, the significance, review of literature, aim and scope of the present study and its objectives.Chapter 2- Materials and Methods: This chapter deals with the description of the study area and the methodology adopted for sample collection and analysis. Chapter 3- General Hydrograhy and Sediment Characteristics: Describes the environmental setting of the study area explaining seasonal variation in physicochemical parameters of water column and sediment characteristics. Data on hydrographical parameters, nitrogen fractionation, phosphorus fractionation and biochemical composition of the sediment samples were assessed to evaluate the trophic status. Chapter 4- Nutrient Dynamics on Trophic Structure and Interactions: Describes primary, secondary and tertiary production in Cochin backwater system. Primary production related to cell abundance, diversity of phytoplankton that varies seasonally, concentration of various pigments and primary productivitySecondary production refers to the seasonal abundance of zooplankton especially copepod abundance and tertiary production deals with seasonal fish landings, gut content analysis and proximate composition of dominant fish species. The spatiotemporal variation, interrelationships and trophic interactions were evaluated by statistical methods. Chapter 5- Summary: The results and findings of the study are summarized in the fifth chapter of the thesis.
Resumo:
Econometrics is a young science. It developed during the twentieth century in the mid-1930’s, primarily after the World War II. Econometrics is the unification of statistical analysis, economic theory and mathematics. The history of econometrics can be traced to the use of statistical and mathematics analysis in economics. The most prominent contributions during the initial period can be seen in the works of Tinbergen and Frisch, and also that of Haavelmo in the 1940's through the mid 1950's. Right from the rudimentary application of statistics to economic data, like the use of laws of error through the development of least squares by Legendre, Laplace, and Gauss, the discipline of econometrics has later on witnessed the applied works done by Edge worth and Mitchell. A very significant mile stone in its evolution has been the work of Tinbergen, Frisch, and Haavelmo in their development of multiple regression and correlation analysis. They used these techniques to test different economic theories using time series data. In spite of the fact that some predictions based on econometric methodology might have gone wrong, the sound scientific nature of the discipline cannot be ignored by anyone. This is reflected in the economic rationale underlying any econometric model, statistical and mathematical reasoning for the various inferences drawn etc. The relevance of econometrics as an academic discipline assumes high significance in the above context. Because of the inter-disciplinary nature of econometrics (which is a unification of Economics, Statistics and Mathematics), the subject can be taught at all these broad areas, not-withstanding the fact that most often Economics students alone are offered this subject as those of other disciplines might not have adequate Economics background to understand the subject. In fact, even for technical courses (like Engineering), business management courses (like MBA), professional accountancy courses etc. econometrics is quite relevant. More relevant is the case of research students of various social sciences, commerce and management. In the ongoing scenario of globalization and economic deregulation, there is the need to give added thrust to the academic discipline of econometrics in higher education, across various social science streams, commerce, management, professional accountancy etc. Accordingly, the analytical ability of the students can be sharpened and their ability to look into the socio-economic problems with a mathematical approach can be improved, and enabling them to derive scientific inferences and solutions to such problems. The utmost significance of hands-own practical training on the use of computer-based econometric packages, especially at the post-graduate and research levels need to be pointed out here. Mere learning of the econometric methodology or the underlying theories alone would not have much practical utility for the students in their future career, whether in academics, industry, or in practice This paper seeks to trace the historical development of econometrics and study the current status of econometrics as an academic discipline in higher education. Besides, the paper looks into the problems faced by the teachers in teaching econometrics, and those of students in learning the subject including effective application of the methodology in real life situations. Accordingly, the paper offers some meaningful suggestions for effective teaching of econometrics in higher education