5 resultados para 340402 Econometric and Statistical Methods
em CaltechTHESIS
Resumo:
Hopanoids are a class of sterol-like lipids produced by select bacteria. Their preservation in the rock record for billions of years as fossilized hopanes lends them geological significance. Much of the structural diversity present in this class of molecules, which likely underpins important biological functions, is lost during fossilization. Yet, one type of modification that persists during preservation is methylation at C-2. The resulting 2-methylhopanoids are prominent molecular fossils and have an intriguing pattern over time, exhibiting increases in abundance associated with Ocean Anoxic Events during the Phanerozoic. This thesis uses diverse methods to address what the presence of 2-methylhopanes tells us about the microbial life and environmental conditions of their ancient depositional settings. Through an environmental survey of hpnP, the gene encoding the C-2 hopanoid methylase, we found that many different taxa are capable of producing 2-methylhopanoids in more diverse modern environments than expected. This study also revealed that hpnP is significantly overrepresented in organisms that are plant symbionts, in environments associated with plants, and with metabolisms that support plant-microbe interactions; collectively, these correlations provide a clue about the biological importance of 2-methylhopanoids. Phylogenetic reconstruction of the evolutionary history of hpnP revealed that 2-methylhopanoid production arose in the Alphaproteobacteria, indicating that the origin of these molecules is younger than originally thought. Additionally, we took genetic approach to understand the role of 2-methylhopanoids in Cyanobacteria using the filamentous symbiotic Nostoc punctiforme. We found that hopanoids likely aid in rigidifying the cell membrane but do not appear to provide resistance to osmotic or outer membrane stressors, as has been shown in other organisms. The work presented in this thesis supports previous findings that 2-methylhopanoids are not biomarkers for oxygenic photosynthesis and provides new insights by defining their distribution in modern environments, identifying their evolutionary origin, and investigating their role in Cyanobacteria. These efforts in modern settings aid the formation of a robust interpretation of 2-methylhopanes in the rock record.
Resumo:
This study addresses the problem of obtaining reliable velocities and displacements from accelerograms, a concern which often arises in earthquake engineering. A closed-form acceleration expression with random parameters is developed to test any strong-motion accelerogram processing method. Integration of this analytical time history yields the exact velocities, displacements and Fourier spectra. Noise and truncation can also be added. A two-step testing procedure is proposed and the original Volume II routine is used as an illustration. The main sources of error are identified and discussed. Although these errors may be reduced, it is impossible to extract the true time histories from an analog or digital accelerogram because of the uncertain noise level and missing data. Based on these uncertainties, a probabilistic approach is proposed as a new accelerogram processing method. A most probable record is presented as well as a reliability interval which reflects the level of error-uncertainty introduced by the recording and digitization process. The data is processed in the frequency domain, under assumptions governing either the initial value or the temporal mean of the time histories. This new processing approach is tested on synthetic records. It induces little error and the digitization noise is adequately bounded. Filtering is intended to be kept to a minimum and two optimal error-reduction methods are proposed. The "noise filters" reduce the noise level at each harmonic of the spectrum as a function of the signal-to-noise ratio. However, the correction at low frequencies is not sufficient to significantly reduce the drifts in the integrated time histories. The "spectral substitution method" uses optimization techniques to fit spectral models of near-field, far-field or structural motions to the amplitude spectrum of the measured data. The extremes of the spectrum of the recorded data where noise and error prevail are then partly altered, but not removed, and statistical criteria provide the choice of the appropriate cutoff frequencies. This correction method has been applied to existing strong-motion far-field, near-field and structural data with promising results. Since this correction method maintains the whole frequency range of the record, it should prove to be very useful in studying the long-period dynamics of local geology and structures.
Resumo:
A central objective in signal processing is to infer meaningful information from a set of measurements or data. While most signal models have an overdetermined structure (the number of unknowns less than the number of equations), traditionally very few statistical estimation problems have considered a data model which is underdetermined (number of unknowns more than the number of equations). However, in recent times, an explosion of theoretical and computational methods have been developed primarily to study underdetermined systems by imposing sparsity on the unknown variables. This is motivated by the observation that inspite of the huge volume of data that arises in sensor networks, genomics, imaging, particle physics, web search etc., their information content is often much smaller compared to the number of raw measurements. This has given rise to the possibility of reducing the number of measurements by down sampling the data, which automatically gives rise to underdetermined systems.
In this thesis, we provide new directions for estimation in an underdetermined system, both for a class of parameter estimation problems and also for the problem of sparse recovery in compressive sensing. There are two main contributions of the thesis: design of new sampling and statistical estimation algorithms for array processing, and development of improved guarantees for sparse reconstruction by introducing a statistical framework to the recovery problem.
We consider underdetermined observation models in array processing where the number of unknown sources simultaneously received by the array can be considerably larger than the number of physical sensors. We study new sparse spatial sampling schemes (array geometries) as well as propose new recovery algorithms that can exploit priors on the unknown signals and unambiguously identify all the sources. The proposed sampling structure is generic enough to be extended to multiple dimensions as well as to exploit different kinds of priors in the model such as correlation, higher order moments, etc.
Recognizing the role of correlation priors and suitable sampling schemes for underdetermined estimation in array processing, we introduce a correlation aware framework for recovering sparse support in compressive sensing. We show that it is possible to strictly increase the size of the recoverable sparse support using this framework provided the measurement matrix is suitably designed. The proposed nested and coprime arrays are shown to be appropriate candidates in this regard. We also provide new guarantees for convex and greedy formulations of the support recovery problem and demonstrate that it is possible to strictly improve upon existing guarantees.
This new paradigm of underdetermined estimation that explicitly establishes the fundamental interplay between sampling, statistical priors and the underlying sparsity, leads to exciting future research directions in a variety of application areas, and also gives rise to new questions that can lead to stand-alone theoretical results in their own right.
Resumo:
High-resolution orbital and in situ observations acquired of the Martian surface during the past two decades provide the opportunity to study the rock record of Mars at an unprecedented level of detail. This dissertation consists of four studies whose common goal is to establish new standards for the quantitative analysis of visible and near-infrared data from the surface of Mars. Through the compilation of global image inventories, application of stratigraphic and sedimentologic statistical methods, and use of laboratory analogs, this dissertation provides insight into the history of past depositional and diagenetic processes on Mars. The first study presents a global inventory of stratified deposits observed in images from the High Resolution Image Science Experiment (HiRISE) camera on-board the Mars Reconnaissance Orbiter. This work uses the widespread coverage of high-resolution orbital images to make global-scale observations about the processes controlling sediment transport and deposition on Mars. The next chapter presents a study of bed thickness distributions in Martian sedimentary deposits, showing how statistical methods can be used to establish quantitative criteria for evaluating the depositional history of stratified deposits observed in orbital images. The third study tests the ability of spectral mixing models to obtain quantitative mineral abundances from near-infrared reflectance spectra of clay and sulfate mixtures in the laboratory for application to the analysis of orbital spectra of sedimentary deposits on Mars. The final study employs a statistical analysis of the size, shape, and distribution of nodules observed by the Mars Science Laboratory Curiosity rover team in the Sheepbed mudstone at Yellowknife Bay in Gale crater. This analysis is used to evaluate hypotheses for nodule formation and to gain insight into the diagenetic history of an ancient habitable environment on Mars.
Resumo:
Part I: The dynamic response of an elastic half space to an explosion in a buried spherical cavity is investigated by two methods. The first is implicit, and the final expressions for the displacements at the free surface are given as a series of spherical wave functions whose coefficients are solutions of an infinite set of linear equations. The second method is based on Schwarz's technique to solve boundary value problems, and leads to an iterative solution, starting with the known expression for the point source in a half space as first term. The iterative series is transformed into a system of two integral equations, and into an equivalent set of linear equations. In this way, a dual interpretation of the physical phenomena is achieved. The systems are treated numerically and the Rayleigh wave part of the displacements is given in the frequency domain. Several comparisons with simpler cases are analyzed to show the effect of the cavity radius-depth ratio on the spectra of the displacements.
Part II: A high speed, large capacity, hypocenter location program has been written for an IBM 7094 computer. Important modifications to the standard method of least squares have been incorporated in it. Among them are a new way to obtain the depth of shocks from the normal equations, and the computation of variable travel times for the local shocks in order to account automatically for crustal variations. The multiregional travel times, largely based upon the investigations of the United States Geological Survey, are confronted with actual traverses to test their validity.
It is shown that several crustal phases provide control enough to obtain good solutions in depth for nuclear explosions, though not all the recording stations are in the region where crustal corrections are considered. The use of the European travel times, to locate the French nuclear explosion of May 1962 in the Sahara, proved to be more adequate than previous work.
A simpler program, with manual crustal corrections, is used to process the Kern County series of aftershocks, and a clearer picture of tectonic mechanism of the White Wolf fault is obtained.
Shocks in the California region are processed automatically and statistical frequency-depth and energy depth curves are discussed in relation to the tectonics of the area.